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Abstract
Agent-based modeling and simulation techniques are widely and successfully used for analyzing complex and emergent
phenomena in many research and application areas. Among the many different reasons which sustain the flexibility and
success of such techniques, it is important to mention the availability of a great variety of software tools, easing (1) the
development of models, (2) the execution of simulations, and (3) the analysis of results. Currently, with the rapid global spread
of the COVID-19 pandemic, one of the most important research area is dedicated to define algorithms and systems to support
epidemic forecasting simulations, scalable on large populations. In particular, in this paper, we propose an agent-based
epidemic model and a distributed architecture that can be used for the simulation of populations represented by millions of
agents. Moreover, the paper presents the results of the simulations on the data of the population of Lombardy.

Keywords
Epidemic modeling, multi-agent simulation, simulation, actor model, ABMS

1. Introduction
Spreading phenomena are widely diffused in the real
world; for this reason, their modeling is crucial in sev-
eral domains. For example, in biological systems, it is
important to model how an infectious pathogen spreads
over a population [1]; in cybersecurity, it is necessary to
understand how a digital virus spreads over the nodes of
a network [2]; in sociology and in Social Network Analy-
sis, it is interesting to track how opinions and behaviors
spread among a community [3]; in economics, it is inter-
esting to study the way companies in different sectors are
affected by the spreading of financial chain effects. The
common point of all of these systems is that they can be
represented by active entities which interact following
different behaviours and models that can be generalized
as a sociality factor. Different modeling techniques have
been proposed to model spreading phenomena in real
and complex scenarios. Two widely used techniques
are System Dynamics (SD) and Agent-Based Modeling
(ABM). System Dynamics analyzes the modeled system
at a high abstraction level, where the interacting entities
are divided into compartments. A common case is the epi-
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demiological SEIR model (Susceptible Exposed Infective
Recovered) [4], where the population can move from one
compartment to another according to predefined flow
rates. However, the traditional SEIR model is not suitable
for fine-grained modeling and not for all domains. On
the other hand, agent-based approaches model the behav-
ior of each individual agent and the interaction between
agents. ABM can be used to study the system at different
abstraction levels and represents an optimal choice for
fine-grained simulations [5, 6].

In this paper, we propose a distributed framework (Ac-
toDemic) that aims to facilitate the design and implemen-
tation of spreading models using Agent-Based Modeling
and Simulation techniques (ABMS) for large scale scenar-
ios. We aim to develop a general and task-independent
framework. Hence, our system tries to satisfy different
requirements: it has to be suitable for different domains,
collaborators and computing facilities. Each agent rep-
resents an entity that is involved in some interactions
in each simulation epoch, depending on its own cus-
tomizable properties. Executing millions of concurrent
agents could represent a bottleneck for ABMS. In order
to solve this issue, we implemented the software agents
as concurrent actors exploiting the ActoDeS Framework.
The actors have their own behavior and change it by
processing asynchronous messages received from the
other actors. Finally, as a use-case to test and validate
our software architecture, we present a simulation of the
COVID-19 outbreaks in Italy during the early-stage of
the pandemic. We model about 10 millions of agents, in-
teracting reciprocally using a social model that we have
also implemented as a custom property of ActoDemic.
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To achieve such a result we have exploited the High Per-
formance Computing facility of the University of Parma,
to scale and distribute the computational load over the
available resources.

2. ActoDeS Framework
ActoDeS is a software framework that simplifies the de-
velopment of concurrent and distributed systems and
ensures an efficient execution of applications [7]. Ac-
toDeS is implemented in Java and takes advantage of
some implementation solutions used in JADE [8], [9]
[10], and in CODE [11]. ActoDeS has been mainly used
for the development of applications in the areas of agent-
based modeling and simulation [12], [13], evolutionary
computation [14] and data analysis [15], [16], [17], [18],
[19], [20], [21].

ActoDeS offers a layered architecture made up of a
run-time and an application layer. The run-time layer
provides the software components that implement the
middle-ware infrastructures that support the develop-
ment of standalone and distributed applications. The
application layer provides the software components that
an application developer needs to extend or directly use
for implementing the specific actors of an application.

In particular, an actor is an autonomous and concur-
rent object, characterized by a state and a behavior, that
exhibits the ability to interact with other actors through
the exchange of asynchronous messages [22]. The com-
munication between the actors is buffered: the incoming
messages are stored in a mailbox until the actor is ready
to process them; moreover, an actor can set a timeout for
waiting for a new message and can then execute specific
actions if the timeout is reached. Moreover, after the anal-
ysis of its incoming messages, an actor can send more
messages to itself or to others, create new actors, update
its state, change its behaviors and, finally, terminate its
own execution. Each behavior can define a policy for han-
dling incomingmessages, through handlers called “cases”.
Each case can only process messages corresponding to
a specific pattern. Therefore, if an unexpected message
arrives, then the actor mailbox maintains it until another
behavior is able to process it.

As introduced above, ActoDeS can be used for devel-
oping distributed applications. In fact, depending on
the complexity of the application and on the availability
of computing and communication resources, an applica-
tion can involve one or more computational nodes. In
ActoDeS, each computational node maintains an actor
space that acts as a “container” for a subset of the actors
of the application and provides them with the services
necessary for their execution. In particular, an actor-
space contains a set of actors (application actors) that
perform the tasks specific to the current application and

two special actors called executor and service provider.
The executor manages the concurrent execution of the
actors of the actor space. The service provider enables
the actors of an application to perform new kinds of ac-
tions (e.g., to broadcast a message or to move from an
actor space to another one).

3. ActoDemic
ActoDemic aims to facilitate the design and development
of spreading phenomena in large-scale scenarios. The
base unit is represented by actors that, depending on the
target application, represent the entities of the system to
model and simulate. If a fine-grained detail is required by
the simulation, it is clear that a large number of concur-
rent actors is required too. Thus, we have used ActoDeS
as a backbone to support concurrent agents, whose com-
putational load can be distributed over several nodes.
Moreover, since ActoDes is a Java-based framework, Ac-
toDemic is able to support different operating systems
and to enable fast development and prototyping, thanks
to Java’s built-in features such as automated serializa-
tion and extensive libraries. ActoDemic defines at least
one actor space in each computational node involved in
the simulation. Indeed, one of the major problems to
deal with, when designing a large scale ABMS, is that
the entire set of agents may not fit in a single cluster
node. When a spreading phenomenon has to be modeled,
the developer should define the behavior of the entities,
the way they interact, and, finally, the characteristics of
the spreading phenomenon. To support a wide range of
spreading phenomena, ActoDemic provides a base ver-
sion of the actors that can be customized by defining
new behaviors in the form of new Java classes. The base
actor to be used for modeling the system entities is called
Base Spreader (BS). For example, if we want to model the
spreading of a pathogen among people, every person can
be modeled and implemented as a BS. A Base Spreader
has a set of default attributes that can be enabled, config-
ured and modified to best suit the model that is going to
be realized:

– Identification number: Unique id that discrim-
inates each individual.

– Belonging to a community or cluster of enti-
ties: As a general point in a spreading simulation,
we might want to distinguish entities in different
clusters and give a higher bias to the interactions
among the cluster and lower outside. For example,
we might want to divide entities by geographical
position or define a social community. If this as-
pect is not required, the entities can be part of a
whole cluster of entities.

– Interaction level: Different interaction ratios
can be defined among the entities to model more
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complex and fine-grained scenarios;
– Current phase: An indicator that specifies in

which contagion phase the entity is;
– Spreading reducer: A damper that can reduce

the spreading. For example, we might want to
model a vaccination, a protective device or the
use of an Anti-malware in a computer network.

3.1. A Modular Software architecture
ActoDemic emphasizes software modularity for all the as-
pects related to the execution andmanagement of the sim-
ulation. Moreover, a modular structure can better adapt
to any proposed epidemic model and be easier to config-
ure. The modular architecture is presented in Figure 1.
The architecture is built around four modules: Agents
initialization and distribution module (AID), Spreading
Management (SM), Synchronization and Message pass-
ing (SMP) and, finally, a utility to generate reports and
evaluate the simulation (RG).

3.1.1. Agents initialization and distribution
module

The AID module enables the distribution of the simula-
tion over different nodes. It manages the initialization of
all the ActoDeS entities to support the actors and the ex-
change of the messages. As a first step, AID initializes the
required actor-spaces. Every created actor-space owns a
thread and shares it with the agents that live in it. Hence,
every individual is a passive actor and shares its thread
with the other actors in the same space. Moreover, AID
creates the base spreaders and distributes them over the
nodes, according to different criteria that the developer
can tune to match the system requirements:

a. Partitioning entities according to their cluster or
community, if more than the default one are de-
fined;

b. Splitting the population in equal-size subsets, de-
pending on the number of actor spaces involved
in the simulation.

In order to manage the base spreaders, AID module
initializes the ActoDeS schedulers and managers in each
actor-space. In particular, each manager creates the sub-
set of agents for its computational node and synchronizes
the simulation execution on that node with the others.
Moreover, the last created manager assumes the role of
“Master”. The default algorithm 1 distributes the whole
population of actors over the 𝑁 available actor spaces
according to the identification number of each actor. Ev-
ery subset includes, generically, the agents that go from
(𝑛−𝑘)⋅𝑝−1 to (𝑛−𝑘+1)⋅𝑝−1, where 𝑛 is the number of par-
titions, 𝑘 identifies the actual partition and 𝑝 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑁
is a constant.

Algorithm 1 Pseudo-code for distribute the whole
agents’ set across N actor-spaces

1: 𝒩 ← 𝐺𝑒𝑡𝑇 𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑜𝑟𝑆𝑝𝑎𝑐𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑠()
2: ℛ ← 𝐺𝑒𝑡𝐴𝑙𝑙𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠()
3: function BuildPopulation(𝒩 ,ℛ)
4: 𝑚𝑎𝑠𝑡𝑒𝑟 ← 𝑎𝑚𝐼𝑇ℎ𝑒𝑀𝑎𝑠𝑡𝑒𝑟()
5: 𝐵𝑒𝑔𝑖𝑛 ← ∅
6: 𝐸𝑛𝑑 ← ∅
7: if 𝑚𝑎𝑠𝑡𝑒𝑟 is 𝑇 𝑟𝑢𝑒 then
8: for (𝑖 = 0; 𝑖 < 𝒩 ; 𝑖 + +) do
9: 𝒮 ← ((𝒩 − 𝑖) ⋅ 𝑝 − 1)

10: ℰ ← ((𝒩 − 𝑖 + 1) ⋅ 𝑝 − 1)
11: 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(ℛ[𝑖], (𝒮 , ℰ))
12: end for
13: end if
14: loop
15: ▷ Wait a message from the master

Actor-space
16: end loop
17: 𝐵𝑒𝑔𝑖𝑛, 𝐸𝑛𝑑 ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐹 𝑟𝑜𝑚𝑀𝑎𝑠𝑡𝑒𝑟()
18: 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐵𝑒𝑔𝑖𝑛, 𝐸𝑛𝑑)
19: end function

where:

• 𝒩 is the number of total Actor-Spaces that we



want to create;
• ℛ is a set that contains all the Actor-Space ref-

erences (unique system-wide id that we need to
reach an actor and communicate with it);

• 𝑚𝑎𝑠𝑡𝑒𝑟 is a Boolean value that specifies whether
an Actor-space acts as a master or not;

• 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒() is a function that communicates
to an Actor-space which population subset it has
to manage.

• 𝐵𝑒𝑔𝑖𝑛, 𝐸𝑛𝑑 define the range of the actors to be
created and managed ;

• 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() divides the population into sub-
sets

Algorithm 2 Pseudo-code to distribute X actor-space
across N computational nodes

1: 𝒩 ← 𝐺𝑒𝑡𝑁 𝑜𝑑𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟()
2: 𝒯 ← 𝐺𝑒𝑡𝑇 𝑎𝑠𝑘𝑃𝑒𝑟𝑁 𝑜𝑑𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟()
3: function SpreadActorSpaces(𝒩 ,𝒯)
4: 𝑁_𝐽𝑂𝐵 ← 𝒩 ⋅ 𝒯
5: 𝐵𝑟𝑜𝑘𝑒𝑟𝐼 𝑝 ← ∅
6: for (𝑖 = 0; 𝑖 < 𝑁_𝐽𝑂𝐵; 𝑖 + +) do
7:
8: if 𝑖 == 0 then
9: 𝐵𝑟𝑜𝑘𝑒𝑟𝐼 𝑝 ← 𝑆𝑒𝑡𝐵𝑟𝑜𝑘𝑒𝑟 𝐼 𝑝()

10: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑏𝑟𝑜𝑘𝑒𝑟 , 𝐵𝑟𝑜𝑘𝑒𝑟 𝐼 𝑝)
11: else if 𝑖 == (𝑁_𝐽𝑂𝐵 − 1) then
12: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑖𝑛𝑖𝑡 𝑖𝑎𝑡𝑜𝑟 , 𝐵𝑟𝑜𝑘𝑒𝑟 𝐼 𝑝)
13: else
14: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑛𝑜𝑑𝑒, 𝐵𝑟𝑜𝑘𝑒𝑟 𝐼 𝑝)
15: end if
16: end for ▷ The For cycle is managed by MPI on

SLURM
17: end function

where:

• 𝒩: Number of computational nodes;
• 𝒯: Number of tasks using a single CPU on every

node;
• 𝑁_𝐽𝑂𝐵 Number of actor-spaces that will be cre-

ated;
• 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐() is the function that launches

an ActoDemic instance and it takes two argu-
ments.

We can distinguish three entities that play a fundamen-
tal role in ActoDemic and are inherited from ActoDeS:
the Broker, the generic node and the Initiator. The Broker
receives messages from producers and sends messages to
consumers. The Initiator acts like the master node and

coordinates the agent creation process across the vari-
ous actor-spaces. AID provides also a sub-module that
enables the use of ActoDemic with the Slurm Workload
Manager (SLURM) and the MPI protocol [23]. SLURM is
an open source, fault-tolerant, and highly scalable clus-
ter management and job scheduling system for large
and small Linux clusters. The MPI protocol is useful to
distribute and manage the actor-spaces across the com-
putational nodes. These capabilities enable the use of
ActoDemic in High Performance Computing scenarios
where SLURM and MPI are often a standard. An expla-
nation of this sub-module is given by algorithm 2.

3.1.2. Spreading Management Module

ActoDemic exploits some concepts from Network Sci-
ence to model the interactions among the system entities.
The Spreading Management module (SM) defines the
way the interactions should occur. Every actor-space
manages its own actors, as well as their own different
interactions. It assumes that a generic actor represents
a node in a generic graph and the outgoing and incom-
ing links represent, respectively, the entities with which
the node interacts and vice versa. Graph theory allows
us to study the distribution of interactions, by studying
the node degree distribution. The distribution of inter-
actions is a crucial factor that affects the spreading of
an epidemic phenomenon. ActoDemic provides a simple
way for tuning this distribution when defining the inter-
actions. It allows the user to choose a distribution and set
it as default. The available distributions that the frame-
work provides are: power-law, log-normal, exponential,
Gaussian and Poisson. The SM module also allows to
partition the entire agents’ set into different clusters and
give a bias to the interactions such that they are higher
inside the cluster and lower outside.

When two individuals interact with each other, a pro-
cedure that simulates an infection is started. We imple-
mented an epidemic diffusion model starting from the
compartments of the SEIRmathematicalmodel (Susceptible-
Exposed-Infective-Recovered)[4]. SEIR is based on a se-
ries of dynamic differential equations that consider the
amount of the population subject to contagion, the trend
over time of the number of individuals who recover after
infection, and of the casualties. A limit of this model is its
coarse-grain nature with respect to individual behaviors.
Moreover, the SM module provides a method to control
the contagion power through a variable called “Trans-
mission Probability” (TP). This variable can take values
between 0 and 1, to express the probability for a conta-
gion operation between two entities to be successful.

However, the compartments are fully customizable. A
single compartment can be disabled, changing in this
way the development of the infection. Moreover, inter-
mediate compartments can also be added to add steps to
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the simulation process and even the duration between
the various phases can be tuned. ActoDemic also makes
it possible to enable and specify the behavior in case of a
re-infection event after a recovery.

An example of a full infection cycle is shown in Figure
2. This scheme represents the COVID-19 infection cycle.
We shall deepen this aspect in section 4.

Finally, the SM module is responsible for the initializa-
tion and the implementation of the damper that is able
to scale the transmission probability.

3.1.3. Synchronization and Message passing
Module

The SMP module manages the message exchange and
time synchronization.

ActoDemic uses a very simple scheduler called ”Cy-
cleScheduler” provided by ActoDeS. This tool can be used
in a wide variety of applications; more specifically, also in
ABMS applications. Furthermore, this schedulermanages
the passive actors within its actor-space and cyclically
repeats the same actions, until the simulation ends:

1. Send a “step” message to all agents and increment
the “step” value; this operation triggers the tran-
sition from one epoch to the next.

2. Perform an execution step of all agents.

Every actor-space is an actor and an actor cannot ac-
cess the internal state of another actor. Therefore, if one
or more Base Spreader that belongs to an actor-space
interact with some other Base Spreaders of a different
actor-space then we must inform both actor-spaces of
that interaction. This can only be done with a messages
exchange system.

Another typical property of the actor model is that
the exchange of messages is asynchronous. This prop-
erty creates a synchronization problem, because an actor-
space could move to the next epoch without receiving
all the necessary information from all the other actor-
spaces. Moreover, an actor-space needs to retrieve the

information from all other actor-spaces before triggering
the transaction of its actors to the next epoch. SMP solves
this problem by creating a mechanism that acts as a “bar-
rier” and does not allow all the actor-spaces to switch to
the next epoch if the message exchange between all the
actor-spaces has not been completed.

Information routing and management may differ ac-
cording to the target model the user wants to implement.
However, there is a basic scheme that we report here.
Some information is sent across every partition type,
while some information can only be sent or received by
the master. The content of a generic message can be
schematized in this way:

1. Information sent to all partitions:
– Information about Base Spreaders’ interac-

tions: it informs the actor-space of the in-
teraction between two or more of its Base
Spreaders;

– Base Spreaders that have to change their
status: it specifies which Base Spreaders
have to change their status due a trigger
situation;

– Base Spreaders that have been closed: ac-
tors that have to end their cycle;

– Statistical Data: data needed to generate
reports;

– Synchronization message: message that
acts like a “barrier”. When an actor-space
receives all the synchronization messages
from all the actor-spaces involved in the
simulation, then it can move to the next
epoch;

– End signal: a message that allows the end
of simulation process;

2. Information sent to master only:
– Partial summary report: data needed to

generate the final reports;
3. Information sent only by the master:



– Base spreaders that have to shutdown them-
selves: the master decides who should end
their execution, based on the user’s crite-
ria.

3.1.4. Reports generation module

The RG module enables the generation of reports during
the simulation process. The user can decide whether to
enable, or not, the generation of reports. Moreover, the
user can decide how often a report is to be generated.

In general, at the end of every epoch every actor-space
generates a report that regards only its partition and its
actors: these are called “intermediate reports”. Further-
more, the intermediate reports are also used to support a
“Save&Load” functionality. Thanks to this mechanism it
is possible to restart the simulation process from a spe-
cific epoch. However, in order to do so, reports need
to include certain information for each Base Spreader
within the actor-space:

– The Identification Number
– The belonging to any type of social cluster
– The interaction level
– The epidemic phase it is currently going through
– How much the epidemic phases must last
– If the Base Spreader has an active Spreading re-

ducer
– A set that maintains the information about the

past interactions with the other Base Spreaders

Finally, at the end of the simulation, the master node gen-
erates a final report that summarizes the most important
and relevant information. In particular, it generates a
summary for each simulation epoch showing how many
people belong to each specific epidemic compartment.

The RG module is also the one responsible for the
initial configuration. Thanks to this, ActoDemic supports
an external configuration file, in which it is possible to
customize and specify all the properties explained in the
article.

4. Use-Case: COVID-19 spreading
in Lombardy

4.1. Modelling
After building and modeling the framework in all its
features, we needed a real use case to test it. Therefore, to
validate ActoDemic, we focused our attention on COVID-
19 spreading. The social interactions, which are themajor
cause of COVID-19 spreading, can be easily modeled by
properly setting the parameters on which ActoDemic
depends.

The proposed model simulates about ten million inde-
pendent agents that reproduce the social behaviour of the
inhabitants of Lombardy, a region in northern Italy. We
have decided to simulate the COVID-19 epidemic spread
in Lombardy for several reasons. It was the first region,
in Italy, to be affected by the virus and currently it is the
first for number of infections; therefore, it is the Italian
region that offers the most abundant statistical data, that
can be used to compare and validate our model. This
represents an interesting use-case to test the robustness
of our methodology.

To make ActoDemic suitable for our use-case, we have
customized every framework module. Every person in-
volved in the simulation process is represented by a Base
Spreader and every epoch represents a generic day in a
real-life situation.

The ten million people living in Lombardy are sub-
jected to a partition by districts. Accordingly, we have
divided the entire population geographically respecting
the number of Lombardy provinces and the distribution
of their inhabitants, creating several social communi-
ties. We have assigned an additional feature to each Base
Spreader: its age. The alter parameter is crucial, because
it adds information in our design and can be used to
better model the social interactions. We have also re-
spected the Lombardy age distribution [24]. To model
social interactions even more efficiently, we have defined
three interaction ratios: high, medium and low. These
have been introduced to increase or decrease the average
number of the subjects’ daily contacts with other people,
based on their age. To estimate the average number of
a Base Spreader’s contacts, we have used data from the
Italian National Institute of Health [25] and [26].

To correctly model the pathogen spread, we have cus-
tomized the SM module. We have used the base SEIR
model, adding two extra compartments: Positive and
Quarantine. These phases are typical in the COVID-19
infection cycle. Initially, all people are in the suscepti-
bility stage. In this compartment, every subject can be
infected by another one who is contagious. An individ-
ual who is infected moves from a susceptibility phase
to an incubation phase and remains in this stage for a
certain time, before moving into an infection stage. A
subject in this condition can infect other people. When
this phase ends, the person becomes positive. After a
certain time, a positive will either heal or die. There is no
death probability, but deaths follow the real death curve
trend in Lombardy. When an individual heals, it cannot
be infected any more. In particular, the incubation phase
lasts from 7 to 14 days, the infectious phase from 3 to 7
days, and the positive phase from 14 to 30 days [27] [28].
Figure 2 shows a diagram that represents the infection
cycle.

To model COVID-19 compartments we have used pre-
liminary data collected by [27], [28] and the age suscep-



tibility to COVID-19 virus. Moreover, the SM module
supports a damper to mitigate the contagion spread; we
have used this particular feature to simulate the adoption
of protective devices. We have collected data about the
percentage of the population that was using protective
devices [29] and their effectiveness [30]. The last prop-
erty expected by the SMmodule concerns the distribution
of social interactions. For this reason, we have evaluated
various hypotheses, but, in the end, we have decided to fo-
cus our studies on a power-law distribution. We assume
a common hypothesis in network science that asserts
that social networks commonly have a power-law distri-
bution with an exponent between 2 and 3, also known
as the scale-free property [2]. Contact networks are usu-
ally modeled with a power-law distribution [31]. We
have exploited these interaction ratios to also model the
lockdown policy and the contagion containment strategy
adopted in Italy in the first pandemic months. Model-
ing the Italian lockdown has required different pieces
of information about the set of “essential workers” [32].
Remember that the only people who were not subjected
to limitations were those who worked in the so-called
”essential sectors”.

The information that the actor-spaces exchange with
each other need to be modified to make the simulator
work. Accordingly, we have customized the SMP module
to modify the message contents:

1. Information sent to all partitions:

– Information about people’s meeting
– People who have to change their infection

phase to ”Incubated” due an infection
– Number of people expected to die in that

partition
– Statistical Data
– Synchronization message
– End signal

2. Information sent to master only:

– Currently positive people
– Currently infected people
– Partial summary report

3. Information sent only by the master:

– Total people expected to die

The last module we have customized is the RG module.
In our use-case, we generate an intermediate report at the
end of every epoch. Obviously, the information included
in each intermediate report has been customized ad-hoc
for our use-case. It contains the following information:

– Id
– Age
– Province of Residence
– Essential worker (Boolean value)

– Mask wearing (Boolean value)
– Incubation Days period
– Infection Days period
– Positive Days period
– Usual Contacts’ List

At the end of the simulation process, a summary report
is generated, containing the following information:

– Epoch Number
– Positive People
– Infected People
– Susceptible People
– Recovered People
– Dead People

Once every customization has been realized, the frame-
work is ready to be tested and to reproduce some results.
In the next section, we report the results we have ob-
tained in our use-case.

4.2. Experimentation
In order to evaluate our simulator, we have considered
two different COVID-19 outbreaks in Lombardy (Italy).
In particular, we are interested in modeling the first wave
form January to April 2020 and the second one between
August and December 2020. The combination of these
two waves has been taken in consideration to validate
our simulator and for modelling its parameters.

When the simulation process starts, all agents are in
the susceptibility status, as previously reported. In this
way, no one can start a hypothetical contagion. Hence,
at the beginning of the simulation we have to choose
randomly which Base Spreader will start directly from an
incubation phase. In addition, to do this, we respect the
number of positives people between 20 and 29 February
in Lombardy on a provincial basis.

We have calibrated the transmission probability with
a random-search over the probability space. We have
estimated this value trying to chase up the contagion
curve until the pre-lockdown date, March 8th, 2020. The
lockdown is an Italian policy to prevent the contagion
spread that implies the closure of non-essential activities,
social distancing and some rules for limiting the move-
ment of people. The value satisfying these hypothesis is
0.3. A summary histogram is shown in figure 3.

4.3. Results
In this section, we present the results that we have ob-
tained simulating different scenarios and considering
each time an average of 10 different runs, since the en-
tire simulation process is stochastic in most of its steps.
For each case, we have measured the simulation quality
using the Pearson correlation and the Root-mean-square



error (RMSE) between simulated data and real data from
the Italian government [33]. The Person correlation ex-
presses any linear relationship between two statistical
variables. This value ranges from −1 to 1, where 1 cor-
responds to a strong positive linear correlation and −1
corresponds to a strong negative linear correlation. In
our case, it explains how much the trend of the simulated
contagion curve resembles the real one. The Root-mean-
square error is computed between the predicted values
and the real data. Figure 4 shows the results of the simula-
tion in the early-stage of the pandemic between January
and April 2020 with the COVID-19 Transmission proba-
bility (CTP) equal to 0.3. The blue curve represents the
real contagion data, while the red curve represents the
simulated data. Pearson correlation and RMSE referred
to Figure 4 until April 30th are equal to 0.992 for Pear-
son correlation and 38818, respectively. The number of
the total positives obtained using the simulator in that
date, exceeds by about 53,000 units the number of actual
positives (Figure 4).

The results in Figure 4 seem to support our thesis, but
it is widely conceivable that the real data measured over
that period were underestimated.

A comparison with the ISTAT ’s serological investiga-
tion reveals a very different situation [34]. This study
shows that, on July 15th, the actual number of COVID-19
cases in Lombardy was about 7.92 time greater than the
data form COVID-19 tests. In addition, the study shows
that about 7.5% of the Lombard population had devel-
oped antibodies for the COVID-19. The population of
Lombardy is about 10,060,000 people, 7.5% of which is
therefore equivalent to about 754,500. This strengthens
the hypothesis that the spring data were underestimated.
Assuming that this ratio is constant over time, we retro-
projected this data and observed how many positive peo-
ple could be estimated.

Therefore, we have used the data of the second wave
(August to December 2020) to perform a fine tuning pro-
cedure. We have used the previously obtained CTP to
verify whether the simulated data properly followed the
real data generated by the second wave. The values ob-
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Figure 4: Simulation results with real data with starting as-
sumptions (CTP=0.3) - Incremental positives representation

tained greatly underestimated the actual data. For this
case, the Pearson correlation is 0.988 and the RMSE is
27415.

Due to the large estimation error, we have decided to
estimate again the transmission probability parameter,
using the data of the second wave. We have searched
for a value that follows the contagion curve correctly.
The best value that satisfies our hypothesis is 0.53. In
this final case the Pearson correlation is 0.996 while the
RMSE is 6405.

4.4. Final Projections
In the light of the previous considerations, we have de-
cided to simulate again the first wave with the new CTP
value. Moreover, we have added also the data obtained
from the comparison with the national screening activ-
ity. The whole process is shown in Figure 5. The blue
curve represents the actual data, the green curve rep-
resents the serological data projection on the real data
and the red curve represents the simulated data with
transmission probability equal to 0.53. The second esti-
mation of the COVID-19 Transmission Probability using
the autumn data is confirmed as a better choice to vali-
date our model. The difference with the serological data
projection on April 30th, corresponding to the last simu-
lation day, is only 83,369 units. Seroprevalence analysis
is much more reliable than the data collected during the
months of March and April, because it also takes into
account asymptomatic people, which is a very crucial
factor. Considering the cumulative curves in Figure 5,
the Pearson correlation is 0.996 and the RMSE is 249,529.
In the comparison between simulated and serological
data Pearson correlation is again 0.996 while the RMSE
is 56,009. Matching data confirms the validity of our
hypothesis and of our simulation model.
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5. Conclusion
In this paper, we have presented a framework that aims
to combine a fine-grained spreading model with a large-
scale scenario. This result is achieved by exploiting an
efficient multi-agent system that can be run on a dis-
tributed architecture. The proposed framework has been
designed with amodular structure to be user-friendly and
easy to customize. We have validated our framework sim-
ulating the outbreaks of COVID-19 in Lombardy (Italy)
in 2020. The results have proven that our framework is
able to simulate and accurately reproduce a spreading
phenomenon. Future works are related to improving the
framework by addingmore features andmodules to make
the framework faster and more customizable.
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