
Prototypes of Productivity Tools for the Jadescript
Programming Language
Giuseppe Petrosinoa, Eleonora Iottia, Stefania Monicab and Federico Bergentia

aDipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy
bDipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy

Abstract
Jadescript is an agent-based programming language built on top of JADE. Until now, the focus of
the development of the language was on design choices, syntax refinements, and the introduction of
expressions and constructs for agent-related purposes. In this paper, the crucial goal of making Jadescript
suitable for a professional use, as JADE programmers are used to, is first attacked. The success of the
Jadescript proposal, as a novel language to build and deploy real-world agent-based systems, is, in fact,
necessarily consequent to its usability and integration with mainstream development tools. In particular,
the integration of the language in a development environment perfectly fits the daily coding routine of a
JADE user, which is an essential aspect toward the successful adoption of the language.

Keywords
Agent Oriented Programming Languages, Agent Oriented Software Engineering, JADE

1. Introduction

The search for novel and effective development technologies to design agents and to build
multi-agent systems is a fast-growing research issue. Over the years, agents were employed in
many different applications, as illustrated, e.g., in the survey [1], where the great impact of agent
technologies is discussed. Example applications are agent-based simulations [2], distributed
constraints reasoning [3], indoor localization systems [4, 5], just to cite some. In general,
multi-agent systems are key instruments for those AI problems when goals to be achieved
are sufficiently complex to require the coordination and cooperation of a high number of
different agents, often distributed on many hosts, that must use their skills in an effective
way in order to gain a collective outcome. Multi-agent systems open to a plethora of new
design and development problems, such as agent communication and interaction protocols,
message passing and routing, deployment of agents to network hosts, the reception of shared
environment information, agents’ norms and validations, and so on. These interesting issues
are taken over by Agent Oriented Software Engineering (AOSE) researcher and in general by
agent systems experts, producing a wide range of solutions and frameworks, as well as end-user
software platforms [6]. Most, if not all, AOSE methodologies are based on the Agent Oriented

WOA 2021: 22𝑛𝑑 Workshop “From Objects to Agents”, September 2-3, 2021, Bologna, Italy
" giuseppe.petrosino@studenti.unipr.it (G. Petrosino); eleonora.iotti@unipr.it (E. Iotti);
stefania.monica@unimore.it (S. Monica); federico.bergenti@unipr.it (F. Bergenti)
� 0000-0001-6234-5328 (G. Petrosino); 0000-0001-7670-2226 (E. Iotti); 0000-0001-6254-4765 (S. Monica);
0000-0002-4756-4765 (F. Bergenti)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giuseppe.petrosino@studenti.unipr.it
mailto:eleonora.iotti@unipr.it
mailto:stefania.monica@unimore.it
mailto:federico.bergenti@unipr.it
https://orcid.org/0000-0001-6234-5328
https://orcid.org/0000-0001-7670-2226
https://orcid.org/0000-0001-6254-4765
https://orcid.org/0000-0002-4756-4765
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Programming (AOP) [7, 8] paradigm, that explicitly raise the concept of agent as a base building
block, ready to be used by the programmer. Many AOP frameworks and platforms, at least the
most popular, provide software libraries written in some General Purpose Languages (GPLs), and
such libraries extend the usage of the chosen language to AOP problems. As a matter of fact, a
standard way to enrich a GPL with custom functionalities, e.g. agent-based ones, is to provide
Application Programming Interfaces (APIs). Alternatives to the utilization of GPL in software
development are various, and its worth citing at least two possibilities, namely, Domain Specific
Languages (DSLs) and scripting languages.

These two alternatives, revisited in the AOSE field, open to a step forward in the direction
of AOP, which is the use of Agent Programming Languages (APLs) [9]. Such languages not
only support agent-based features, but put them on a language level. Jadescript, a language
built on top of JADE (Java Agent DEvelopment framework), is an example of AOP scripting
language. Other popular APLs are Jason [10], which is an implementation of AgentSpeak(L) [11],
3APL [12], GOAL [13], SARL [14], and so on [15]. The major gain in adopting a novel language
for agent development is the presence of native abstractions, constructs, and expressions in
such a language that explicitly recall the agent domain, putting agents as first-class entities.

On the other hand, despite the great results in terms of effectiveness and usability, most of
the aforementioned APLs has a niche audience, composed mainly by researcher and students.
Pure agent-based programming seems yet relegated to academic environments, despite many
real-world applications use multi-agent systems on a daily basis, e.g., expert systems, traffic
simulation systems, telecommunication routing or networking systems, and so on. A reason for
that, among many others, has to be investigated in developers’ preferences and programming
trends, that, for example, have seen the recent advance of actor-based programming paradigm
by means of worldwide popular frameworks such as Akka Actors. A successful language for a
wider audience must take into account such preferences and trends, making its idioms as simple
and readable as possible, yet not ambiguous. Unfortunately, these design choices alone are
not sufficient, though, to bring success to languages that aims at supporting the development
of complex environments such as multi-agent systems. The core functionalities offered by an
AOP language are appreciated when they are stable and reliable, making it usable for robust
applications. This means that the implementation of a novel APL should not only regards the
accurate design and implementation of desired capabilities by means of syntactical categories
and their semantics, but also the construction of an adequate ecosystem where the language
operates. Such an ecosystem could be defined as the set of all tools, utilities, and interfaces
that help developers in their daily coding routine, i.e., those services offered by Integrated
Development Environments (IDEs) and middlewares.

In this paper, the main steps taken to build such tools, utilities and interfaces are detailed
for the Jadescript language. The discussed approach aims at making the language completely
integrated with the Eclipse IDE and its plugins, thus providing tools such as a Jadescript
perspective, some specific Eclipse wizards, syntax highlighting, and a launch system for agents.
This work had been achievable thanks to another Eclipse plugin, Xtext, which generates some
ready and easy-to-use default tools for DSLs. These default tools were then adapted to the
agent domain and made it suitable for the Jadescript user experience. The resulting ecosystem
is an important step for the growth of the Jadescript language, and brings to it the professional
feeling that JADE users expect.



The paper is structured as follows. First, in Section 2 an introduction of the Xtext plugin and
related technologies is provided, to give the reader with crucial background information on how
to build a professional Eclipse tool. Then, in Section 3, the core features of the Eclipse plugin
for Jadescript are detailed, taking into account the Xtext extensions and the Eclipse extensions.
Finally, a discussion on the main result of this approach is provided to conclude the paper.

2. Xtext Overview

Eclipse Xtext [16] is the main software used to create the discussed tools associated to Jadescript.
Xtext presents itself as an open-source framework for development of DSLs and programming
languages. It is designed to lift most of the burden of the PL designer, not only by carrying the
usual tasks of a parser generator, but also by providing a set of advanced tools that guide in
creating a complete compiler and a full-featured IDE.

A Xtext language project is constituted of many Eclipse Java subprojects. Three of them are
the most important: (i.) the main project, containing the grammar, the semantics and all the
other components of the language that are independent of the User Interface (UI); (ii.) the ide

project, which contains the general details and behaviour of the UI (regardless of the specific
target environment, so the code in this project can be specialized into, for example, an IntelliJ
IDEA [17] plugin, or an editor embedded on a Web page); (iii.) the ui project, which depends
on the ide project and contains the specific details related to the Eclipse UI - in other words, it
contains the code to implement a custom language plugin for the Eclipse IDE [18].

In the main project, there is the entry point for the language design process, which is the
Xtext grammar file of the language. This is because Xtext is grammar driven, i.e., there is a
grammar language used to generate, from a single source file, all the essential elements of the
skeleton of the compiler and the other tools. The first essential element is the lexer, generated
from the terminals defined the grammar. The generated lexer is usually complete and sufficient
in most of the cases. However, in this case it is worth mentioning, since its default behaviour has
been specialized for Jadescript, because it is a language with semantically-relevant indentation.
Section 3.2 describes the details of this specialization.

The second element is the generated parser. Predictably, it is used by the compiler and the
editor to produce an Abstract Syntax Tree (AST) from the text of the language’s source file.
With it, a syntax validator is generated by Xtext. This component is in charge of isolating those
portions of the code that are syntactically incorrect and of producing the corresponding error
messages for the user. Since the Xtext grammar language is an extension of the ANTLR [19]
parser generator, the generated parser employs a 𝐿𝐿(*) [20] parsing strategy.

Finally, Xtext produces a metamodel of the generated language using Eclipse Modeling Frame-
work (EMF) and its metamodel format, Ecore. This means that a set of Java interfaces and classes
(more specifically, Java beans), which constitute a Java object model of the grammar, is created.
For each non-terminal grammar rule, a Java EObject class is generated, where each component
of the rule is mapped to one of the class’ properties (i.e., private fields with public accessors).
This provides the language designer with a statically typed programming interface to work with
the ASTs generated by the parser. Note that an important difference between a Xtext grammar
and an ANTLR grammar is the ability to add some additional metadata in Xtext to customize



the aspects of the generation of the object model of the language. Another notable difference is
the ability to inject, directly in the model of the generated AST, some useful metadata, like the
type of syntax element that a reference can be linked to. This metadata comes in handy when
working with the AST in the portions of the compiler that define the semantics of the language.

With these essential software elements automatically layed out by the Xtext generator from
the grammar file, the language designer has already a working editor and other tools working for
code editing and syntactical validation. However, to actually interpret and generate executable
code, it is required to add some custom components. This is achieved in Xtext by a strong
adoption of the Dependency Injection (DI) pattern. The main idea is that all the classes that
implement the functionalities provided by the final plugin refer to their main dependencies by
declaring them as fields annotated with Google Juice’s @Inject. The Xtext framework uses
a module class to define the bindings between the Java interfaces of these dependencies with
their respective implementations. These bindings are then used by an Injector object which
creates all the components and their dependencies at runtime. The module class is open for
extension and all the binding methods can be overridden, providing the language designer with
the ability to change in a controlled and structured way almost any aspect of their language
and its associated tools.

Among these aspects, two require particular attention, namely code validation and compiled
code generation. Their implementations are the main components of the software that mostly
depend on the semantics of the language.

Semantic validation of the user code is managed by a validator class. In Xtext, such a class
is implemented with a declarative approach - the language designer has to specify, by adding
methods to the class, which types of the Java object model of the AST he wishes to check. In
case of erroneous or problematic code, these methods can build and emit errors, warnings and
informational markers, bound to specific regions of the source code, that are used as feedback
with text messages.

Compiled code generation can be achieved by means of a class that extends the interface
IGenerator, which defines how to generate new files starting from the AST obtained from parsing
a source file. For JVM-based languages, however, another specialized approach is available, based
on the JVMModelInferrer facility. By extending this class, the user is able to symbolically declare
which Java classes, interfaces, methods and fields are generated from each source file. Xtext
keeps track of these mappings and exploits them to ease the implementation of the language by
partially generating: (i.) a type checking system, based on the Java type system; (ii.) a scope
provider, that is able to resolve references to Java packages, types and symbols; (iii.) a code
generator that creates the .java files corresponding to the declared Java structures provided by
the JVMModelInferrer; (iv.) some IDE features like basic autocompletion, symbolical navigation
in the editor, linking between written and generated code and basic refactoring. Of course,
if the validator or the type checker find errors in the source code, the compiler aborts code
generation, signaling the problem to the user.

Jadescript is currently a language based on the JVM. More specifically, it is compiled to Java
code. For this reason, the Jadescript compiler uses JVMModelInferrer facility to take advantage
of the pre-built mechanisms generated by Xtext for JVM-based languages. The general outline
of the validation and code generation processes provided by Xtext and used by the Jadescript
compiler is schematized in Fig. 1.



Figure 1: The compilation and validation processes in the Xtext framework for JVM-based languages.

When the user feeds the compiler with a set of Jadescript source files, or when they save some
changes in the editor, the Xtext runtime provides the contents of the files to the lexer generated
from the Jadescript grammar. The lexer produces a stream of tokens, and the TokenSource
facility, provided by Xtext, is used to preprocess this stream of tokens, in order to inject into
the stream some synthesized tokens relative to the semantically relevant indentation. The new
stream of tokens is fed to the parser, which produces an AST and a EMF model of it. These
results are then fed to the validator, which statically analyzes the code in search for problems,
following the semantics rules of the language. If the validator does not find any errors in
the code, the same AST is reused and provided to the JVMModelInferrer, which produces an
intermediate representation, namely the Java model of the target code. This representation is
finally used by the framework to produce the Java compiled code.

3. Jadescript Eclipse IDE Plugin

The discussed Jadescript development tools include an Eclipse IDE plugin, which contains all
the software tools to write Jadescript code, to create and manage projects, to create and edit
source files, and to launch and debug agent platforms. The plugin was created with the help of
Xtext, especially for those features of it strongly connected to the syntax and semantics of the
language, and that, therefore, compose the Jadescript compiler. However, some of the features
were created by means of the tools provided by the Eclipse Plugin Development Environment
(PDE).



3.1. Xtext Extensions

As mentioned in section 2, in Xtext, new language projects enjoy of a set of great features
implemented by default and generated automatically from the grammar file. However, some
aspects require the language developer attention to adapt the default Xtext implementations by
overriding them with custom code. For Jadescript two aspects required specialized implementa-
tions, namely the TokenSource class used to manage semantically relevant indentation, and the
set of mechanisms that implement the semantics of the language in the compiler.

3.1.1. Token Source System

In a Xtext-generated parser, the parser reads the input tokens from a TokenSource, which is an
object that produces tokens from source code when required by the parser. In most programming
languages, the parser includes the assumption that whitespace tokens (i.e.: blanks, tabulation,
new line characters) are hidden in the grammar and not considered in the input stream of
tokens, since their main purpose is to act as separators between parts of the text that are
relevant according the grammar. This is not completely true for languages with semantically
relevant indentation1 like Jadescript. In those languages, the level of indentation of a line not
only keeps the code tidy and easy to read, but it is also used by the compiler to understand
the kind of instruction expressed by the line and how that line is placed in the structure of the
code. For example, for procedural code, some statements are expected to include inner blocks
of code (e.g., the then branch of an if statement, or the body of a loop statement), and the lines
belonging to these blocks of code have to start with an inner level of indentation. At the same
time, in Jadescript and other modern programming languages, the sequential composition of
statements is not expressed by an explicit end-of-statement operator symbol (e.g., ; for C-like
languages). Such separation of statements has to be inferred by the compiler using the new
line character as hint. In this inference mechanism, the compiler has to leave the possibility
for the user to split in an orderly fashion any statement in two or more lines, whenever such
statements are too long and the programmer whishes to increase readability.

In Jadescript, this set of behaviours is encoded into a special kind of tokens (also known as
synthetic tokens) that signals the parser for the occurrence three types of structural points in
the code: (i.) the point of termination of a statement (NEWLINE synthetic token); (ii.) the point
where a new code block is opened (INDENT synthetic token); (iii.) the point where a previously
opened code block is closed (DEDENT synthetic token). The TokenSource interface of Xtext is
then implemented by the JadescriptTokenSource class which includes an algorithm that injects
the synthetic tokens mentioned above according to a simple set of rules.

By default, when the parser requests a new token, the JadescriptTokenSource object simply
responds with the next token that the lexer generated by scanning the source code. However,
when one (or several) new line characters is encountered in the stream, the algorithm computes
the indentation level of the new line. If the indentation is more in depth than the previous line,
and the previous line ends with do (keyword that, in Jadescript, is used in many constructs to
express the beginning of the definition of a procedural body) or the new line starts with any
of the following keywords {concept, proposition, predicate, action, function, procedure,

1and for some other esoteric exceptions, like Whitespace [21]



Top Level Entities

Entity Features

Statements

Expressions

Semantics classes

AST

Generated Model

Xtext JVM Model

Sonneteer IR

classes, interfaces,
methods, fields...

statements,
expressions

Java code

Figure 2: The semantics classes categories and how their generated artifacts are composed.

on, property, execute}, then an INDENT synthetic token is injected in the stream. When the
indentation is more in depth than the previous line, but those keywords are not present, the
algorithm does not inject any new token in the stream. This last rule allows users to split a
line into two, indenting the second line, to simply improve readability without changing the
semantics of the code in the lines. If, however, the indentation level is the same as the previous
line, a NEWLINE token is injected, signaling the parser that a statement (or declaration) ended
with the previous line and that a new statement (or declaration) starts with the new line. Finally,
when the indentation is less in depth than the previous line, a number of DEDENT tokens are
injected corresponding to the number of blocks being closed. This set of rules is designed to
take advantage of the Jadescript programmer’s intuition in using the indentation and of the line
breaks in its code to intelligently infer some structural aspects of the agent program.

3.1.2. Jadescript Semantics Classes

After parsing, the compiler created by the Xtext framework produces a Java object model of
the AST. This can be navigated to perform the computations required by the semantics of the
language. These compiler computations, in the Jadescript compiler, are handled by a set of Java
classes called semantics classes. Each one of these classes handles how a particular node of the
AST is used for code generation and validation.

The semantics classes can be subdivided in four categories, each one referring to a type
of construct of the language. The following paragraphs describe these categories, sorted by
structural depth level.

Top Level Entities. These semantics classes implement the semantics of those top-level
declarations (e.g., agent, behaviour, and ontology) that can be written directly inside a file, not
contained in any other construct or declaration. When the compiler walks the AST on these



types of nodes, they are mapped directly to JVM types (classes and interfaces) by means of the
utilities provided by the JVMModelInferrer facility generated by Xtext.

Entity Features. These elements of the language are the main building blocks of each top-
level declaration. They are usually directly enumerated in the declaration’s body, and for this
reason, they appear as indented by just one level in the source code. Examples of features include
event handlers and properties in agent and behaviour declarations, and concept and predicate
entries in ontology declarations. Entity features are usually compiled to Xtext-compatible JVM
model elements, namely Java fields, methods and inner classes.

Statements. Statements are the building blocks of the procedural portions of code. They are
used in those entity features that require a procedural body, i.e., structured lists of commands.
Note that such commands can include expressions or other procedural bodies (e.g., the guard
and the body of a while statement). Statements are compiled by semantics classes into objects of
a custom Internal Representation (IR) model, named Sonneteer. Sonneteer is a small Java library
developed by AILab which implements a simple API to generate text strings of Java source
code. The usage of this library in the implementation of the semantics classes ensured a good
degree of type safety in the generation of structured Java code. Objects built with this library
are used by the compiler in the code generation phase at the end of compilation, to compute
the actual text content of the generated Java source code. The send message statement and
the activate behaviour statement are good examples of elements of this category.

Expressions. As in many modern programming languages, the most fine-grained category of
language constructs is expressions. Expressions are designed to be composable, and, in statically
and strongly typed languages like Jadescript, each expression has a type, which is used by the
compiler to check if some combinations of operations and operands is consistent with the rules
of the language semantics. In Jadescript, the type of an expression is computed at compile time
not only for validation purposes, but also to infer the type of variables and of agent/behaviour
properties. As a matter of fact, each semantics class related to type of expression includes a set
of methods to compute the type of the expression. Semantics classes related to this category
compile expressions into simple text strings, but they do it in three steps. In the first step,
all the statements and expressions in a procedural code block are translated into Sonneteer
objects, which include some placeholder elements which annotate the generated code with
some compiler metadata. These placeholder elements are then analyzed in the second step.
The result of the analysis is finally used in the third step to perform some optimizations and
late-linking between variables. Note that expressions include literals, infix and unary operations
like addition and logical negation, and other particular operations like matches for pattern
matching.

3.2. Eclipse Extensions

Part of the Jadescript Eclipse plugin is implemented using directly the PDE. The Eclipse IDE is
designed as an extensible framework, with facilities that ease the addition and customization of
functionality. Such customizations can be created in plug-ins, and the extensibility approach



Figure 3: A screenshot of an Eclipse IDE workspace with the Jadescript perspective.

allows plug-ins to use and extend other plug-ins declaring a set of hooks in the extension points
in the plugin’s manifest XML file. The Jadescript plugin uses these extension points to customize
some aspects of the user interface of the IDE. The main extensions of the Eclipse IDE provided by
the plugin are the Jadescript Perspective, the Wizards, the Syntax Highlighting in the Jadescript
editor, and the Container and Agent launcher actions.

3.2.1. Jadescript Perspective

Fig. 3 shows a screenshot of the Jadescript Perspective as provided by the plugin. On the left,
there is the Package Explorer View. It is a tree view of the current eclipse workspace and the
contents of its projects. The contextual menu on these elements contains a set of common
Eclipse project management actions, like importing and exporting, and operations to manage the
view itself, like Refresh. However, it is enriched of several actions specific for the management
of Jadescript projects, namely actions to start wizards for the creation of Jadescript projects and
files (see section 3.2.2) and for running the Jadescript agents declared in the source files (see
section 3.2.4). At the center, there is the editor section. This acts as a container for editor tabs,
including instances of the Jadescript Editor for the editing of Jadescript source files. On the
right, the Jadescript perspective lays out the Outline View. This view shows the structure of the
code of the currently focused file in a tree view. In this view the root nodes of the tree represent
the top level declarations in the file, and their children represent their declared features, i.e.,
properties, event handlers, functions and procedures for agent and behaviour declarations, and
concepts, predicates, propositions and actions for ontology declarations. The Outline View



enjoys of a bidirectional linking between the contents of the file and the nodes, which is updated
and rendered in real time.

3.2.2. Eclipse Wizards

The plugins includes a set of wizards for the creation of projects and source files. The New
Jadescript Project wizard guides the user in the creation of a new project with the Jadescript
nature. Jadescript projects always include three folders, created by the wizard. The src directory
is where all Jadescript and Java source files written by the user should go. Jadescript files saved
in this directory (and in its subdirectories) are used as input for the Jadescript compiler, which
generates the corresponding Java files into the second directory, named src-gen. Finally, the
libs directory contains a set of JAR libraries used by the project. The New Jadescript Project
wizard always puts three JARs in this directory, which are the jadescript.jar file, which
includes some required code for Jadescript (like the implementation of the base Jadescript Agent
and Behaviour types), and the jade.jar and the Apache Commons Codec libraries, required
for running JADE and Jadescript agents and platforms.

Four more wizards are used to guide the user to create new Jadescript source files. The
New Jadescript File wizard creates a new empty Jadescript file in the specified project location,
with the specified module. This wizard is the specialized into the New Jadescript Agent, New
Jadescript Ontology and New Jadescript Behaviour wizards, which collect information from the
user in order to create new Jadescript source files with the stubs of, respectively, an agent

declaration, an ontology declaration, and a behaviour declaration.

3.2.3. Syntax Highlighting

As many modern programming editors, code is highlighted with different colors, in order to help
the user quickly recognize and tell the various elements of the code. This aspect of the appearance
of code in the Jadescript editor can be customized by the user via the Jadescript section of
the Eclipse preferences, at the Syntax Coloring preference page. The syntax highlighting for
Jadescript is advanced enough to make use of complex semantics rules to highlight the text
of different colors, and this is done by using a set of special methods in the semantics classes.
This approach allows, for example, to highlight with different colors the first assignment of a
variable and its subsequent usages and re-assignments.

3.2.4. Container and Agent Launchers

Two fundamental entries in the plugin’s extension points implement two actions in the IDE.
The first is accessible from the Eclipse’s toolbar, and it is used to launch a new JADE main
container. By pressing this button, a new instance of the JADE Main container is launched
locally on the machine where Eclipse is running. This action creates a new local agent platform,
and it can be used as a starting point to build a complex network of JADE containers. The
button is a pulldown button, with a second option available in its dropdown menu. By clicking
on the second option, the created JADE main container includes a Remote Monitoring Agent
(RMA) with a Graphical User Interface (GUI) that allows the developer to see the status of the
platform and to create new containers and agents. The JADE software is launched using the



Figure 4: A screenshot of the agent launcher dialog for the Jadescript editor in Eclipse.

currently open project’s Java classpath. In this way, from within the RMA GUI it is possible to
spawn new agents in the platform, using the Java classes generated from the Jadescript code.

The second action is accessible from the Run As submenu of the contextual menu. It is only
accessible when a Jadescript source file is selected or open in the editor. When clicked, a dialog
window opens. This window provides the user with the ability to launch a new agent in a new
container. It itemizes a list of selectable agent types, which correspond to the ones declared in
the source file. The dialog then allows the user to customize various details of the agent, like its
name, its input arguments, and the details of the container in which it will be created in.

4. Conclusions

In this paper, programming tools and user interfaces explicitly designed for Jadescript users
are discussed. The approach is driven by the idea of moving toward a professional ecosystem
for the novel AOP language Jadescript, taking into account developer preferences and trends
as well as the advantages provided by modern IDE facilities. As a base building block of the
internal development of Jadescript, Xtext was employed. The brief Xtext overview presented
in this paper detailed its functioning and explained the importance of such a framework not
only in the generation of Java sources but also clarified its role in the validation of code and
generation of errors, warnings, and information, useful to the programmer who aims to use
Jadescript. The Eclipse IDE Plugin for Jadescript is then discussed, with a slight digression
on the token source system as a Xtext extension. Such an extension is of fundamental value



since it introduces semantically relevant indentation, and the implementation of such a kind
of indentation in Jadescript also allows users to split long lines. These could be seen as small
details, but they play an important role to greatly improve readability and to give a modern
look-and-feel to the language. Apart from that, the users can also take advantage of all the
utilities that the Eclipse IDE has for their other project, such as Java ones. In particular, the
Jadescript perspective customizes the package explorer, the outline with a structure view of
the semantic entities of Jadescript used in the code, and the main space, which is taken by
the actual editor. Actions on these spaces are tailored on the needs of a multi-agent system
developer, providing in particular a way to launch containers and Jadescript agents, thus easing
the integration with JADE. Moreover, Eclipse wizards were introduced to ease and speed up the
creation of the Jadescript project and the syntax highlighting further enhance the usability of
the language. All these environment-related features together fulfill the need for a complete
and professional tool that matches the expectations of JADE users. As future works, Jadescript
semantic classes, defined as part of the Xtext compiler, can also be extended and used to provide
more advanced language tools, like an improved validation system with quickfix actions for the
user and an autocompletion system working in the Eclipse IDE editor for Jadescript.

References

[1] J. P. Müller, K. Fischer, Application impact of multi-agent systems and technologies: A
survey, in: Agent-oriented software engineering, Springer, 2014, pp. 27–53.

[2] J. B. Larsen, Agent programming languages and logics in agent-based simulation, in:
Modern approaches for intelligent information and database systems, Springer, 2018, pp.
517–526.

[3] B. Lutati, I. Gontmakher, M. Lando, A. Netzer, A. Meisels, A. Grubshtein, Agentzero: A
framework for simulating and evaluating multi-agent algorithms, in: Agent-Oriented
Software Engineering, Springer, 2014, pp. 309–327.

[4] F. Bergenti, S. Monica, Location-aware social gaming with AMUSE, in: Y. Demazeau, T. Ito,
J. Bajo, M. J. Escalona (Eds.), Advances in Practical Applications of Scalable Multi-agent
Systems. The PAAMS Collection: 14𝑡ℎ International Conference, PAAMS 2016, Springer
International Publishing, 2016, pp. 36–47.

[5] S. Monica, F. Bergenti, A comparison of accurate indoor localization of static targets via
WiFi and UWB ranging, in: Trends in Practical Applications of Scalable Multi-Agent
Systems, the PAAMS Collection, 2016, pp. 111–123.

[6] K. Kravari, N. Bassiliades, A survey of agent platforms, Journal of Artificial Societies and
Social Simulation 18 (2015) 11.

[7] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51–92.
[8] Y. Shoham, An overview of agent-oriented programming, in: J. Bradshaw (Ed.), Software

Agents, volume 4, MIT Press, 1997, pp. 271–290.
[9] M. Dastani, A survey of multi-agent programming languages and frameworks, in: Agent-

Oriented Software Engineering, Springer, 2014, pp. 213–233.
[10] R. H. Bordini, J. F. Hübner, M. Wooldridge, Programming multi-agent systems in AgentS-

peak using Jason, volume 8, John Wiley & Sons, 2007.



[11] A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in:
European workshop on modelling autonomous agents in a multi-agent world, Springer,
1996, pp. 42–55.

[12] K. V. Hindriks, F. S. De Boer, W. Van der Hoek, J.-J. C. Meyer, Agent programming in 3APL,
Autonomous Agents and Multi-Agent Systems 2 (1999) 357–401.

[13] K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, J.-J. C. Meyer, Agent programming with
declarative goals, in: International Workshop on Agent Theories, Architectures, and
Languages, Springer, 2000, pp. 228–243.

[14] S. Rodriguez, N. Gaud, S. Galland, Sarl: a general-purpose agent-oriented programming
language, in: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), volume 3, IEEE, 2014, pp. 103–110.

[15] R. C. Cardoso, A. Ferrando, A review of agent-based programming for multi-agent systems,
Computers 10 (2021) 16.

[16] M. Eysholdt, H. Behrens, Xtext - Implement your language faster than the quick and dirty
way tutorial summary, in: Proceedings of the ACM International Conference Compan-
ion on Object Oriented Programming Systems Languages and Applications Companion,
SPLASH ’10, 2010. doi:10.1145/1869542.1869625.

[17] IntelliJ IDEA, https://www.jetbrains.com/idea/, 2021. Accessed on July 8th, 2021.
[18] Eclipse IDE, https://www.eclipse.org/ide/, 2021. Accessed on July 8th, 2021.
[19] T. J. Parr, R. W. Quong, ANTLR: A predicated-LL(k) parser generator, Software: Practice

and Experience 25 (1995). doi:10.1002/spe.4380250705.
[20] T. Parr, K. Fisher, LL(*): The foundation of the ANTLR parser generator, in: Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2011. doi:10.1145/1993498.1993548.

[21] E. Brady, C. Morris, Whitespace, https://web.archive.org/web/20150523181043/http://
compsoc.dur.ac.uk/whitespace/index.php, 2003. Accessed on May 23rd, 2015.

http://dx.doi.org/10.1145/1869542.1869625
https://www.jetbrains.com/idea/
https://www.eclipse.org/ide/
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1145/1993498.1993548
https://web.archive.org/web/20150523181043/http://compsoc.dur.ac.uk/whitespace/index.php
https://web.archive.org/web/20150523181043/http://compsoc.dur.ac.uk/whitespace/index.php

	1 Introduction
	2 Xtext Overview
	3 Jadescript Eclipse IDE Plugin
	3.1 Xtext Extensions
	3.1.1 Token Source System
	3.1.2 Jadescript Semantics Classes

	3.2 Eclipse Extensions
	3.2.1 Jadescript Perspective
	3.2.2 Eclipse Wizards
	3.2.3 Syntax Highlighting
	3.2.4 Container and Agent Launchers


	4 Conclusions

