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Abstract
Increasing road traffic levels in urban areas require actions and policies to manage and control the
number of road users. Travelers’ choices of transport modes, particularly private cars, that generate the
main share of road traffic levels, depend on many factors, which include both personal preferences and
level-of-service variables. Understanding how travelers choose transport modes according to the above
factors is an important challenge in order to adopt the most suitable policies and facilitate a sustainable
mobility. In the literature, behavioral models have been mainly proposed in order to both estimate mode
choice percentages and capture travel behaviors by suitable estimation of some parameters associated to
the above factors. However, behavior is complex in itself and the mechanisms underlying user behavior
might be difficult to be captured by traditional models. In this paper, a neuro-fuzzy approach is proposed
to extract mode choice decision rules by evaluating different sets of rules and different membership
functions of the neuro-fuzzy model. Particularly, to determine which inputs are the most relevant in
such decision process, fuzzy curves and surfaces have been considered in order to take into account
nonlinear effects. The neuro-fuzzy model proposed in this paper has been thought to be embedded in
an agent-based methodological framework where user agents – representing travelers – make travel
choices based on the rules learnt by means of the neuro-fuzzy system.

Keywords
Agent System, Fuzzy System, Mode choice, Neuro-Fuzzy Inference, Rule Learning

1. Introduction

Traffic flow conditions in urban road networks are the consequences of several user’s choices –
from the decision to own a private vehicle to the decision to use it for commuting or to move
between origin/destination pairs, at different periods, along some paths. In the last decades,
road vehicle traffic levels have been constantly increasing due to – among the others – better
economic conditions, which has led to an increasing number of personal vehicles, and increasing
number of urban inhabitants, which has implied a continuous growth of urban mobility.
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The consequences of increasing vehicular traffic levels are well-known, ranging from traffic
jams, loss of time and economic resources – which affect the quality of life of citizens – to
environmental effects both as a direct consequence of mobility (i.e., air pollution) and indirectly
for the use of environmental resources from production to end-of-life of a vehicle [1, 2, 3, 4].

Different strategies have been adopted at different levels (e.g., local, national and suprana-
tional) to manage such effects, mainly by providing solutions based on transit modes and new
technologies [5, 6, 7, 8]. However, suitable policies aimed at balancing private vehicular traffic
against shared transportation modes require prediction of mode users’ choices based on both
level-of-service variables and personal preferences [9, 10]. In addition, user’s path choices affect
the way in which vehicular congestion spreads across the transportation network [11]. From
one hand, the choice to use a private vehicle involves also mobility choices (e.g., having a guide
license, owing a vehicle) [12], on the other hand, once the private vehicle has been chosen as
modal alternative, users will get their trip destinations from given trip origins by following a
sequence of road facilities, which identify paths on the transportation networks [13, 14, 15].

As well known, ultimately path choices will lead to traffic flow levels on road links [16, 17].
Then, the sequence transport mode–path choices has important consequences, both directly
on the transportation network conditions (e.g., travel times, pollution, monetary costs) and
indirectly on the territorial system (e.g., environmental impacts, life quality).

Analysis and prediction of users’ choices – mainly mode choices - are considered fundamental
both for the knowledge of travel demand on the available transport modes and for deciding how
to vary the level-of-service variables of the transportation supply in order to achieve sustainable
mobility and better quality of life [18].

Every day users perform several choices about their trips (e.g., destination, travel mode and
path), which depend on the combination of policy measures (e.g., traffic restrictions, access fees
to Limited Traffic Zones, parking fares, cost of public transport), external issues (e.g., fuel price)
and new forms of mobility like car-sharing, car-pooling, and, as expected in the next future,
shared connected and autonomous vehicles [19, 20]. To realize their trips most users still prefer
to use private mobility rather than transit opportunities. In other words, individual drivers
are reluctant to change their habits regardless of the policies adopted and the additional costs
involved in using private mobility. Therefore, it is clear that one key issue is to understand
user’s travel behavior more in-depth as well as the factors that influence it.

Understanding users’ choice behavior is becoming a pressing need and many models and
approaches have been used to this aim, from random utility models [21, 22, 23] to stated prefer-
ences (SP) [24] techniques and artificial intelligent agents [25]. Random utility models associate
a utility value to each available alternative depending on some attributes that characterize the
alternative itself. Then, it is assumed that users choose the alternative having the maximum
perceived utility, which is in fact a stochastic variable whose distribution function leads to
several discrete choice models (for example, Logit, Nested Logit and Probit models [23, 26, 27],
the derived Dogit Logit [28] and Logit Box-Cox transformation [29, 30], as well as the the
Cross-Nested Logit or the Generalized Nested Logit models [31, 32]). Such models are often
based on compensatory approaches [33] where negative attributes (e.g., times or costs) balance
positive attributes (e.g., reliability or comfort), both suitably weighted by parameters that result
from calibration procedures exploiting user’s choice data. A promising alternative to random
utility approaches is represented by neuro-fuzzy models [34, 35, 36], which in the literature



have been used to obtain trip choice probabilities [37] or to estimate perceived travel time [38]
among the others. Additionally, in recent years there has been an increasing use of intelligent
software agents (hereafter simply agents) in the transportation domain, to cover manifold
aspects and provide effective and efficient solutions for Intelligent Transportation Systems
(ITS) [39, 40, 41]. In fact, agents are designed with learning, cooperative and adaptive behav-
iors capabilities [25, 42, 43], often based on Artificial Intelligence (AI) techniques [44], which
make them suitable to simulate a great variety of complex human behavior and agent-to-agent
interactions at different levels of detail [45, 46, 47] and abstraction [48].

In this perspective, this paper proposes a neuro-fuzzy network to both identify the main key
factors and model user’s mode choice behavior [49, 50, 51, 52], which is expected to be used as
input for modular agents simulating travelers’ behaviors. More in detail, the paper proposes
a neuro-fuzzy network approach to identify behavioral rules that will be used by agents in a
cascading structure. Although the paper focuses only on the neuro-fuzzy model and related
results to understand andmodel trip mode choice behavior, however the modular agent structure
will be also described in order to provide the methodological framework where the results of the
neuro-fuzzy module will be embedded. Some simulations have been carried out to estimate the
performance of the proposed neuro-fuzzy component of the proposed modular framework. The
obtained results are satisfactory and outperform those obtained by the conventional behavioral
models with which they have been compared.

The rest of the paper is organized as follows. The next Section introduces the agent-based
approach in a modular framework perspective. Section 3 describes the agent structure while
Section 4 gives a brief overview on the neuro-fuzzy modeling. Section 4 introduces the adopted
methodology. Finally, in Section 5 the neuro-fuzzy based module is validated and in Section 6
some conclusions are drawn.

2. The Agent-based Approach: Modular Framework

This Section provides the agent-based methodological framework in which the neuro-fuzzy
model is embedded. The basic idea underlying this simulator is that traffic flows on several mode-
specific transportation networks (e.g., private, public and pedestrian) might be simulated in an
integrated way starting from mode choices made by travelers based on both socio-economic
and transport supply features.

As introduced in Section 1, mode choices affect urban traffic levels in terms of next path
choices, which are linked to the features of the transportation supply mainly in terms of level
of service variables. As mode choices generally depend on user socio-economic characteristics
other than on mode supply features, not trivially here agents have been associated with users
rather than vehicles. Starting from this perspective, the decision-making process – described
in the following sections – autonomously performed by the users (i.e., user agents) to choose
a specific transportation mode for their trips has been modelled mainly based on these two
groups of variables. The agent-based approach simulates the travel decision process starting
from the first step, i.e. learning behavioral rules for being able to make mode choices. It
overcomes some limits of a previous simulator developed by the Authors, which even though
has a high versatility (it was used also to simulate Urban Air Mobility (UAM) for point-to-point
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Figure 1: User Agent - Block scheme.

connections [53, 54]), from the other hand does not allows further progresses like investigating
on users’ behavior.

The hypothesis of “rationality” has been assumed, similarly to random utility models, which
implies that each user agent is able to make a choice based on the advantages and disadvantages
of each available alternative. Figure 1 represents the block-scheme of the user agent. More in
detail, the initial information, which refers to behavioral rules learnt by means of a neuro-fuzzy
model, is provided by the (Input Data) block, whose task is to collect information (e.g., trip origin
and destination, time, whether, comfort, user’s preferences, etc.) and sent to the Mode Choice
Module block. This block simulates the user’s selection of the transportation mode (here private,
public and pedestrian modes have been considered). For each available transportation mode, a
dedicated module (e.g., the agent module Private Driving Module for the private car mode) will
interact with the corresponding transportation network (i.e., the Private Transportation Network,
set as exogenous system where other user agents that are active on that network at a given time
interact among them). Finally, the Feedback Module will release a feedback about information
concerning the travel features on the given network experimented during the journey between
the origin/destination pair. Such feedback will be used by the user agent to modify, if it is the
case, his/her mode choices based on both the experiences and the set of rules learnt at the
beginning and provided by the Input Data block.

Currently, we are developing the Mode Choice Module that equips the user agent and will
realize the first task carried out by the user agent. In the adopted cascading structure, this



module influences all the other simulations of the transportation network and, therefore, it
represents the most critical component to simulate urban mobility by using an agent approach.
This component will be explained in detail in the following.

3. The Neuro-based Fuzzy Inference System

In mathematics, a set is defined as a collection of objects independently by their number. In
1965, Lotfi Zadeh [55] proposed the idea of fuzzy set as a set to which objects can belong with
different degrees of membership. The confidence that the member belongs to the fuzzy set is
represented by a membership function whose values can range from 1 (absolutely true) to 0
(absolutely false) and that can assume different shapes (e.g., triangular, trapezoidal, gaussian,
sigmoidal, etc.). Here, we will apply fuzzy theory to sets of descriptive words, where the degree
of membership identifies the confidence placed in the descriptor.

More in detail, the structure of a fuzzy inference system (FIS) [56] comprises three conceptual
components:

1. a selection of fuzzy rules;

2. a catalog of membership functions exploited in the fuzzy rules;

3. a reasoning method, which executes the inference procedure (i.e., the fuzzy reasoning
introduced earlier) by using the rules and a given condition to produce a logical output
or conclusion.

In addition, the basic FIS can receive both fuzzy and crisp1 inputs, returning (usually) fuzzy sets
as output, but sometimes it is necessary that a crisp output (representative of the fuzzy set) is
returned. In particular, when a FIS receives and returns crisp data, it is realizing a nonlinear
mapping from the input space to the output space.

This mapping is made explicit through a set of fuzzy if-then rules. Each rule is referred
to a local behavior of the mapping, where the antecedent of the rule delimits a fuzzy area of
the input space, while the consequent refers to the associated outputs [57]. Various types of
inference are described in the literature [58], but due to its flexibility in terms of writing, Sugeno
inference [59, 60] will be adopted (see below) since it provides a systematic approach to obtain
fuzzy rules for a given set of input-output data. More specifically, a generic fuzzy Sugeno rule
has the form:

if x is A and y is B then z

where the antecedent consists of the fuzzy sets A and B, while the consequent is given by
𝑧 = 𝑓 (𝑥, 𝑦), where 𝑓 ( ) is a crisp function of x and y.

Generally, the process to construct a FIS, usually called fuzzy modeling, consists of four steps:

1. Fuzzification - This process associates the degree of membership of an input data to a
fuzzy set by means of special functions, called membership functions, defined on the
range of possible values in the domain [0;1];

1Crisp inputs are assimilated to fuzzy singletons with degree of membership 0 everywhere except at specific
points where degrees of membership are 1.



2. Fuzzy operator - A fuzzy operator (AND or OR) is used to combine the set of antecedents
of each rule;

3. Implication - This method builds the consequential part of each rule;

4. Defuzzification - The aggregator and defuzzifier blocks to set a FIS are represented by the
weighted sum operator.

The FIS model allows a rapid prototyping of input-output relationships by extracting a set
of rules able to model the nature of the data. Several variations/adaptations to the standard
FIS process exist for improving the performance of the model. In particular, the centers and
standard deviations of Gaussian membership functions can be adaptively modified to better fit
the training data. In addition, an artificial neural network (ANN) can be trained to estimate
the error even based on a small number of inputs used for the FIS [61]. Finally, a further stage
may introduce also automatically new rules and corrections (based on expert knowledge) to the
rules previously included in the FIS process.

In particular, neuro-fuzzy modeling exploits neural network-based learning techniques to
have the FIS. In this case, a trial-and-error process, that stops when the desired accuracy is
reached, is used to set decision rule sets. The fuzzy rule set is constructed by covering the
input-output space of the samples with overlapped patches, where each patch represents a
fuzzy rule. Note that a total coverage of samples is generally impossible to achieve since it is
almost impossible to have a patch for each sample. In other words, the goal is to implement
a technique that is as simple and efficient as possible for estimating the optimal number of
clusters and the initial values of their centers in multivariate data. Then, from this information,
an iterative optimization algorithm attempts to minimize a cost function that maintains the
quality of the original data. Once the optimal configuration of clusters is selected then each
cluster center is made to correspond to a fuzzy rule.

To implement the above process we used the GENFIS toolbox of Matlab [62]. This toolbox
allows the extraction of fuzzy membership functions (FMFs) based on input/output pairs.
Moreover, the Fuzzy Logic toolbox of Matlab include the Adaptive Neuro-Fuzzy Inference System
(ANFIS) function [63, 64] for tuning the neuro-fuzzy inference system on the basis of some
collections of input–output data. Therefore, a GENFIS+ANFIS approach was used in this work.

4. The Adopted Methodology

The above-described approach has been used to analyze users’ decision criteria when choosing
a transportation mode, which can be expressed by simple if-then rules compatible with fuzzy
logic like:

if the time on mode 𝑀1 is less than the time on mode 𝑀2 then the mode 𝑀1 is chosen

However, the decision processes underlying modal choices are usually more complex and
more similar to:

if 𝑡𝑀1 < 𝑡𝑀2 and 𝑡𝑎𝑐/𝑒𝑔,𝑀1
< 𝑡𝑎𝑐/𝑒𝑔,𝑀2

and 𝐾𝑀1 > 𝐾𝑀2 and ⋯ then the mode 𝑀1 is chosen



which, in words, can be expressed in the form ”if the travel time of 𝑀1 is less than that of 𝑀2
and the access/exit time of 𝑀1 is less than that of 𝑀2 and the comfort of 𝑀1 is greater than that
of 𝑀2 and ⋯ then the user chooses the mode 𝑀1”.

In particular, in the random utility theory, a set of decision rules can be expressed as:

𝑈𝑀1 = 𝛽1 ⋅ 𝑡𝑀1 + 𝛽2 ⋅ 𝑡𝑎𝑐/𝑒𝑔,𝑀1
+ 𝛽3 ⋅ 𝐾𝑀1 + ⋯ + 𝜖𝑀1 (1)

𝑈𝑀2 = 𝛽1 ⋅ 𝑡𝑀2 + 𝛽2 ⋅ 𝑡𝑎𝑐/𝑒𝑔,𝑀2
+ 𝛽3 ⋅ 𝐾𝑀2 + ⋯ + 𝜖𝑀2 (2)

where the variables associated with the various transportation modes (e.g., 𝑡, 𝑡𝑎𝑐/𝑒𝑔, 𝐾, etc.) are
weighed by the set of parameters 𝛽 obtained by a calibration procedure [9, 65]. In addition, a
random term (𝜖) is also considered to take into account information and simplification in both
model assumptions and mathematical formulations.

A further problem is the estimation of attributes not known to the users, usually referring to
non-chosen transportation modalities or qualitative attributes (e.g. comfort, etc.); in all these
cases such attributes should be estimated by the analysts. Moreover, the number of variables to
be taken into account in order to represent the behavior of users might be very large and then
the calibration process could be time-consuming.

In the user’s decision-making process some variables characterizing each transportation
mode are relevant while other are just marginal. It is worthwhile to note that modeling user’s
behaviors should focus on identifying the set of variables that influence significantly the user’s
behavior. This aspect also meets one of the constraints of the FIS technique represented by
the need to limit the number of variables in order to avoid a combinatorial explosion of the
rule catalog. Therefore, the selection of the most representative variables (i.e., inputs) is an
important stage with respect to both utility and FIS models.

In this work, a fuzzy curve approach was used to select the parameters to be used as inputs
to the FIS procedure, taking into account nonlinear effects [66, 67]. More in detail, with respect
to a multiple-input single-output system (MISO), a travel mode is characterized by a set of
variables 𝑥𝑖, with (𝑖 = 1, ⋯ , 𝑚) where 𝑚 is the number of available travel modes, while 𝑦 will
denote the travel mode chosen by the user. For the 𝑘-th user and the 𝑡 training patterns, the
fuzzy curve 𝑐 will be computed as:

𝑐𝑖(𝑥𝑖) =

𝑡
∑
𝑘=1

𝑦𝑘 ⋅ 𝐹𝑖,𝑘(𝑥𝑖)

𝑡
∑
𝑘=1

𝐹𝑖,𝑘(𝑥𝑖)
with 𝐹𝑖,𝑘(𝑥𝑖) = 𝑒

−( 𝑥𝑖,𝑘−𝑥𝑖
𝑠 )

where 𝐹𝑖𝑘 is a Gaussian function 𝐹𝑖𝑘(𝑥𝑖), with 𝑥𝑖 and 𝑠, respectively, be the mean and the standard
deviation of the 𝑖-th coordinate of the 𝑘-th training pattern. This method consists in assessing
the flatness of the fuzzy curve (𝑐𝑖) because if it is too flat then the output will be weakly affected
by inputs [51, 68].

The relevance of the input is determined based on a figure of merit, defined as the range of
the fuzzy curve that is usually a fraction of the domain of the corresponding output variable
(i.e., y) over the entire dataset of examples. More in detail, we subdivide the intervals of input



and output in overlapped regions (consequently, also the fuzzy curve will be subdivided in
overlapped regions) and label the corresponding value of the variable with fuzzy values. From
each of the regions in which the fuzzy curve is partitioned it will be possible to derive a rule (with
simple antecedent) that describes the input-output relationship for that region and, therefore,
it will be possible to obtain a set of rules that approximates the fuzzy curve. In this way, the
application of fuzzy patches (and thus fuzzy rules) is easier, although one must neglect possible
correlations between input variables since there are as many fuzzy curves as the input-output
pairs. Since there are no fuzzy curves for multiple simultaneous inputs, it is then necessary to
use fuzzy surfaces to solve the problem. Fuzzy surfaces [69, 70] can be assumed as an extension
of fuzzy curves. More formally, a fuzzy curve can be represented as:

𝑐𝑖(𝑥𝑖, 𝑥𝑗) =

𝑡
∑
𝑘=1

𝑦𝑘 ⋅ 𝐹𝑖,𝑘(𝑥𝑖) ⋅ 𝐹𝑗,𝑘(𝑥𝑗)

𝑡
∑
𝑘=1

𝐹𝑖,𝑘(𝑥𝑖) ⋅ 𝐹𝑗,𝑘(𝑥𝑗)
with 𝐹𝑖,𝑘(𝑥𝑖) = 𝑒

− ( 𝑥𝑖,𝑘−𝑥𝑖
𝑠 )

and 𝐹𝑗,𝑘(𝑥𝑗) = 𝑒
− ( 𝑥𝑗,𝑘−𝑥𝑗

𝑠 )

In this case, the fuzzy rules have a double antecedent whose connective is AND since there
are two inputs involved in the rule that approximates the fuzzy surface. Trivially, a fuzzy
surface can generate countless fuzzy curves and for this reason that extracting a catalog of rules
directly from fuzzy surfaces is convenient. In fact, the use of fuzzy surfaces allows reducing
the cardinality of the system (thanks to the presence of rules with double antecedent) and,
moreover, the rules extracted from fuzzy surfaces trivially contain those extracted from fuzzy
curves.

5. Modal Choice Module Validation

In this section we will show the performance of the modal choice module we designed. To this
end, a database obtained through the use of revealed preference techniques [9], has been used.
The sample considered in the validation process consisted of 500 users for home-work trips.
The travel modes considered are walking (A), motorcycle (B), car-driver (C), car-passenger (D),
and bus (E). Table 1 shows the percentages of users for the two different travel purposes and for
the five travel modes.

Travel Modes Code %

Walking A 10.8
Motorcycle B 9.2
Car-driver C 56.4
Car-passenger D 6.2
Bus E 17.4

Table 1
Percentage of transport mode usage for the exploited sample.



Themain variables considered in the surveys can be classified into; i) socio-economic variables
(e.g., income, sex, age, private mode availability and so on) and ii) level of service variables (e.g.,
travel time, monetary costs, parking availability and so on) referred to the characteristics of
the transportation network (see [9]). The input data are considered as fuzzy variables and each
fuzzy variable, referred to a linguistic description, is characterized by a measure of membership
in each of the considered linguistic properties.

In particular, the steps of the process to model a FIS are:

1. Inputs Fuzzification - Here the inputs membership degree to the relevant fuzzy sets are
determined. The input is always a crisp value ranging in the domain of the input variable,
while the output is a fuzzy degree of membership in the [0;1] domain. Consequently, we
will know the belonging degree of each antecedent with respect to each rule.

2. Fuzzy Operators Application - The fuzzy operator is applied to obtain a representative
value of the antecedent result (simple or composed) for that rule to be applied to the
output functions. The input fuzzy operator consists of two or more membership values
derived from the fuzzification of the input variables, while the associated output consists
of a single truth value.

3. Outputs Aggregation - In this step, the fuzzy outputs produced by each rule are unified into
a single fuzzy set, ready to be defuzzified, by graphical superposition. In the aggregation
process, the input is the set of membership functions (stopped or scaled), resulting from
the implication process on each rule, while the output is represented by a fuzzy set for
each output variable.

4. Output Defuzzification - In input this process receives the aggregated fuzzy outputs and
in output returns a crisp value obtained by calculating the barycenter of the geometrical
shape derived from the aggregation of the outputs. Moreover, by adopting Sugeno’s FIS,
peaks (or singletons) are used as consequents then simplifying the defuzzification process.
Accordingly, the main features of the FIS generated by GENFIS can be summarized
in 12 inputs representing the qualitative variables reported in the database used for
the validation of the module (i.e., the attributes of the travel modes available to users
such as time, monetary costs, vehicle ownership, saturation ratio of parking facilities at
destination, etc.), 16 rules and a single output for each user, represented by the chosen
travel mode.

Based on the input-output patterns, a conventional FIS was first designed without making use
of any learning techniques and, as expected, unsatisfactory performance have been obtained.
Subsequently, the toolboxGENFIS and the functionANFISwere used to improve the performance
of the initial FIS. In particular, the neural network used by ANFIS is made by five layers, namely,
the first layer for the input, the second layer for the membership functions associated with
each input, the third layer for the implication constructs, the fourth layer for the aggregation
operation and, finally, the fifth layer for the output. Note that the membership functions, after
learning, may be overlapped even in significant numbers

The predictions calculated by applying the proposed methodology to the sample for home-
work trips are represented in Figure 2, both for the 500 users and for the various modes of
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Figure 2: Accuracy of the neuro-fuzzy approach in predicting users’ mode choices.

transport. Eachmarker identifies the prediction accuracy between a user’s choice and a transport
mode (identified from A to E), while not aligned markers identify incorrect predictions. From
Figure 2, it is evident that the proposed neuro-fuzzy approach have a high degree of accuracy
in predicting the transport mode chosen by the user in the larger part of cases. It is wrong
only in presence of users characterized by very specific attributes (which can considered as
outliers). The high level of accuracy indicates the capability of the rules calibrated by the model
to simulate the real behavior of users, thus confirming the basis of many economic theories
that the behavior of users can be inferred from their choices. Further analyses of the results
shows that users primarily give a high value on travel time versus, for example, travel costs
and prefer private such as cars and motorcycles, except when the ratio of vehicles in the family
versus the number of its members is much less than 1.

Although the degree of accuracy of the modal choice predictions is far more than satisfactory
for our purposes, further refinements (mainly in terms of better understanding users’ behavior)
would be possible if additional qualitative information such as user information systems, comfort,
privacy, etc., not present in the dataset used, were available.

Note that with quantitative data, the two methods, random utility models and fuzzy methods,
arrive at the same results in terms of predictions, but differ on the basis of the specific information
provided (e.g., semantic rules versus parameter values). Differently, the presence of qualitative
variables does not change the operation and predictions produced by the proposed neuro-fuzzy
approach (e.g., semantic rules are considered with both quantitative and qualitative variables),
while random utility models require a conversion from qualitative to quantitative variables to be
operated on the basis of a conversion scale. In the latter case, it is evident how the correctness
of the predictions is affected by the conversion scale adopted. Finally, the feedback released
in the last step (see Section 2) should ensure the agent’s ability to adapt its mode choices over
time as conditions change.



6. Conclusions

This paper proposed a neuro-fuzzy model to feed a more complete agent-based structure where
travel choice behavioral rules are embedded. More in detail, the paper has focused on the
learning step of user agent, based on fuzzy logic approaches, to recognize the most important
rules taken into account by users when they choose a transport mode.

Among the relevant features of fuzzy logic approaches, there are the use of linguistic variables
either in place or in addition to numerical variables; the identification of associations among
variables by using fuzzy conditional statements; the implementation of complex relationships
by using fuzzy-based algorithms.

In this work, experimental data have been used to find linguistic rules in the form if-then
whose antecedents and consequents utilize fuzzy sets instead of crisp numbers. The fuzzy
inference models derived from the previous rules allow understanding user’s mode choice
behavior and provide user agents with such knowledge. Particularly, behavioral rules make user
agents not only able to simulate traveler’s choices but also to modify their choices according to
such rules in case of variations in the transportation system – mainly level of service variable
variations.

The main advantages of the fuzzy approach are: i) opportunity to obtain rules with direct
interpretation; ii simple use of such results also by generalist analysts; iii opportunity to
improve the model by adding further information of the experts in the field (expert judgments).
In addition, the fuzzy model does not require high computing complexity, particularly for the
on-line applications, and its “network” structure facilitates the implementation of a hardware
system with relatively little costs. The main disadvantage is the limited number of inputs
required by the fuzzy model to work efficiently, which implies data-compression techniques
and suitable reduction of the inputs.

The results obtained in this study are very promising, not only they are comparable with
other known approaches (e.g., random utility models), but they offer greater opportunity for
simulating user behavior in a more complete user agent framework addressed to simulate
transportation systems. Particularly, feedback obtained at the last step - as a result of the
interactions with the Transportation Networks Module in the user agent framework - might be
used to feed learning steps, which could be improved continuously.

Finally, as a further development, we note how the performance of the designed Mode Choice
Module makes it also suitable to be embedded in a personal agent assistant to support users in
their daily travel activities
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