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Abstract
The paper discusses the problem of cooperative argumentation in the context of a multi-agent
system (MAS), focusing on the computational model. An actor-based model is proposed as a
first step towards cooperative argumentation in MAS to tailor distribution issues—illustrating a
preliminary fully-distributed version of the argumentation process completely based on message
passing.
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1. Introduction
One of the critical problems in distributed and collaborative multi-agent systems (MAS) –
where agents cooperate towards a goal – is conflict resolution, where argument evaluation
often plays a critical role [1]: agents can provide explicit arguments or justifications
for their proposals for resolving conflicts by exploiting the so-called negotiation via
argumentation, or cooperative argumentation, as an effective approach to resolving
conflicts. There, the purpose of multi-agent argumentative dialogues is to let agents
reach an agreement on (i) the evaluation of goals and corresponding actions (or plans);
and (ii) the adoption of a decentralised strategy for reaching a goal, by allowing agents
to refine or revise other agents’ goals and defend one’s proposals.

Cooperative argumentation is exploited in some real-world multi-agent applications [2].
However, a key problem in such applications is that a widely-acknowledged well-founded
computational model of argumentation is currently missing, thus making it difficult
to investigate the convergence and scalability of argumentation techniques in highly-
distributed environments [1, 2]. To alleviate those difficulties, we present a first version of a
message-based distributed argumentation algorithm as the basic pillar of a computational
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model for cooperative argumentation in MAS. In this work we ignore issues such as
agent autonomy and MAS coordination artefacts, and focus instead on the distribution
issues of cooperative argumentation, based on the logic-based agreement framework
Arg-tuProlog [3, 4], which enables agent dialogue and defeasible reasoning in MAS. In
particular, we focus on the single query evaluation mode of the tool, aimed at evaluating
the admissibility of a single statement with no need to build the entire argumentation
graph. We propose a preliminary fully-distributed version of the argumentation algorithm,
based on message passing, whose focus is on the requirements for a sound distributed
evaluation of the argumentation task. For the purpose of this paper, we exploit the
actors’ paradigm and its main properties—i.e., a) fully reactive computational nodes; b)
communication through message passing.

Accordingly, the paper is structured as follows. Section 2 contains useful preliminary
notions in order to understand the content of the paper. Section 3 and Section 4 illustrate
the contribution, introducing a distributed computational model enabling the assessment
via argumentation of a single argument. In particular, Section 3 first discusses how the
argument evaluation algorithm of Arg-tuProlog can be parallelised , then addresses the
problem of knowledge manipulation in a decentralised setting. In Section 4 we deliver
a complete and coherent model for decentralised reasoning based on the actor model.
Finally, Section 5 concludes the work.

2. Preliminaries
2.1. A basic intro to structured argumentation
In the argumentation language, a literal is an atomic proposition or its negation.

Notation 1. For any literal 𝜑, its complement is denoted by �̄�. That is, if 𝜑 is a proposition
𝑝, then �̄� = ¬𝑝, while if 𝜑 is ¬𝑝, then �̄� is 𝑝.

Literals are brought into relation through rules.

Definition 1 (Rules). A defeasible rule has the form: 𝜌 : 𝜑1, ..., 𝜑𝑛 ⇒ 𝜓 with 0 ≤ 𝑛, and
where

• 𝜌 is the unique identifier for 𝑟, denoted by N(𝑟);

• each 𝜑1, . . . 𝜑𝑛, 𝜓 is a literal;

• the set {𝜑1, . . . 𝜑𝑛} is denoted by Antecedent(𝑟) and 𝜓 by Consequent(𝑟).

Defeasible rules – denoted with DefRules – are rules that can be defeated by contrary
evidence. Pragmatically, a defeasible rule is used to represent defeasible knowledge, i.e.,
tentative information that may be used if nothing could be posed against it. For the sake
of simplicity, we define non-axiom premises via defeasible rules with empty Antecedent.
A theory consists of a set of rules.

Definition 2 (Theory). A defeasible theory is a tuple ⟨Rules⟩ where Rules ⊆ DefRules.



Arguments are built from defeasible rules. Given a defeasible theory, arguments can be
constructed by chaining rules from the theory, as specified in the definition below—cf. [5].

Definition 3 (Argument). An argument 𝐴 constructed from a defeasible theory ⟨Rules⟩
is a finite construct of the form:

1. 𝐴 : 𝐴1, . . . 𝐴𝑛 ⇒𝑟 𝜑

with 0 ≤ 𝑛, where

• 𝑟 is the top rule of 𝐴, denoted by TopRule(𝐴);

• 𝐴 is the argument’s unique identifier;

• Sub(𝐴) denotes the entire set of subarguments of 𝐴, i.e., Sub(𝐴) = Sub(𝐴1) ∪ . . .∪
Sub(𝐴𝑛) ∪ {𝐴};

• 𝜑 is the conclusion of the argument, denoted by Conc(𝐴);

Arguments can be in conflict, accordingly to two kinds of attack: rebuts and undercutting,
here defined as in [5].

Definition 4 (Attack). An argument 𝐴 attacks an argument 𝐵 (i.e., 𝐴 is an attacker of
𝐵) at 𝐵′ ∈ Sub(𝐵) iff 𝐴 undercuts, rebuts or undermines 𝐵 (at 𝐵′), where:

• 𝐴 undercuts 𝐵 (at 𝐵′) iff Conc(𝐴) = ¬N(𝑟);

• 𝐴 rebuts 𝐵 (at 𝐵′) iff Conc(𝐴) = ¬𝜑 and Conc(𝐵′) = 𝜑;

An argumentation graph can then be defined exploiting arguments and attacks.

Definition 5 (Argumentation graph). An argumentation graph constructed from a defea-
sible theory 𝑇 is a tuple ⟨𝒜,⇝⟩, where 𝒜 is the set of all arguments constructed from 𝑇 ,
and ⇝ is the attack relation over 𝒜.

Notation 2. Given an argumentation graph 𝐺 = ⟨𝒜,⇝⟩, we write 𝒜𝐺, and ⇝𝐺 to denote
the graph’s arguments and attacks respectively.

Given an argumentation graph, we leverage on labelling semantics [6, 7] to compute the
sets of arguments that are accepted or rejected. Accordingly, each argument is associated
with one label which is either IN, OUT, or UND, respectively meaning that the argument is
either accepted, rejected, or undecided.



Listing 1: Structured argumentation, Arg-tuProlog answer query algorithm for grounded semantic
(pseudo-code).
AnswerQuery (Goal ):

𝐴1, ..., 𝐴𝑛 = buildSustainingArguments (Goal)
Res = ∅
for A in 𝐴1, ..., 𝐴𝑛:

Res = Res ∪ Evaluate (A, ∅)
return Res.

Evaluate (A, Chain ):
if(∃ B ∈ Attacker (A): Evaluate (B, A ∪ Chain) = IN)

return OUT
if(∃ B ∈ Attacker (A): B ∈ Chain)

return UND
if(∃ B ∈Attacker (A): Evaluate (B, A ∪ Chain) = UND)

return UND
return IN.

2.2. Structured evaluation in Arg-tuProlog
The Arg-tuProlog [3, 4] engine is a logic-based agreement framework enabling defeasible
reasoning and agents’ conversation, which reifies the structured argumentation model
presented above.

With respect to the available argumentation frameworks, Arg-tuProlog includes the
query-based mode, which allows for single-query evaluation according to the selected
semantics1. Single-query evaluation is precisely the algorithm we are interested in, given
that cooperative argumentation in highly reactive systems is often based on a quick
debate on some beliefs – those concerning the decision to be made at that moment –
rather than on a complete assessment of all the agents’ knowledge—where a shared
agreement is not easily achieved.

This feature is accessible in the tool through the predicate

answerQuery(+Goal, -Yes, -No, -Und)

which requests the evaluation of the given 𝐺𝑜𝑎𝑙, and gets the set of facts matching the
goal distributed in the three sets IN, OUT, and UND as a result.

The algorithm used to evaluate a single claim (or query) according to grounded
semantic is inspired by the DeLP dialectical trees evaluation [8]. Starting from the given
Goal, arguments 𝐴1, ..., 𝐴𝑛 sustaining that claim are constructed and evaluated via the
evaluate predicate—see Listing 1, where A indicates the argument to be evaluated, Chain
is the chain of recursive arguments looking for attackers, and B is an attacker. To assess
the 𝐴1, ..., 𝐴𝑛 status (acceptability or rejection), three conditions are evaluated—note
that the order is important to guarantee the soundness of the algorithm:

(Cond1) if a conflicting argument labelled as IN exists, then 𝐴1 is OUT;
1At the time of writing, only grounded semantic is fully implemented



Figure 1: Argumentation graph for arguments from Example 1, in which nodes are arguments and
edges are attacks between arguments.

(Cond2) if a cycle in the route from the root to the leaves (Chain) exists, then 𝐴1 argument
is UND;

(Cond3) if a conflicting argument labelled as UND exists, then also the 𝐴1 argument is UND.

If none of the above conditions is met then the argument can be accepted.

Example 1. Let us consider the following theory and the corresponding arguments (also
depicted in Figure 1 (a))

r1 : ⇒ a
r2 : a ⇒ b
r3 : ⇒ ¬ b
r4 : b ⇒ c

A0 : ⇒𝑟1 a
A1 : A0 ⇒𝑟2 b
A2 : ⇒𝑟3 ¬ b
A3 : A1 ⇒𝑟4 c

where, according to grounded semantic 𝐴0 is IN while 𝐴1, 𝐴2 and 𝐴3 are UND.
Suppose to require the evaluation of claim 𝑏 through the algorithm in Listing 1. First, the

arguments sustaining 𝑏 are selected, in this case only 𝐴1. Then the evaluation conditions
on 𝐴1 attackers – only 𝐴2 in this case – are assessed. However, 𝐴2 admissibility depends,
in turn, on 𝐴1. There is a cycle in the graph (condition (Cond2)), and no other attackers
matching condition (Cond1). As a consequence, 𝐴2 is UND and thus 𝐴1 (condition
(Cond3)). Accordingly, claim 𝑏 is labelled UND in the answer query response as expected.

3. Parallelising arguments evaluation
The first issue when affording computational issues of cooperative argumentation is the
parallelisation of the argumentation process. Parallelisation needs to be tackled under two
distinct perspective: a) the algorithm perspective – i.e., the task perspective – and b) the
data perspective—i.e., the distributed-knowledge perspective. The algorith perspective
aims at parallelising the computational task of the argument evaluation (w.r.t. a given
semantics). The action level here is therefore at the algorithmic level, looking for possible
sub-tasks to be parallelised within the algorithm itself. The data perspective aims instead
at parallelising the data used by the algorithm—i.e., the argumentation defeasible theory.



Listing 2: Evaluate predicate with parallel attackers

Evaluate (A, Chain ):
if( PARALLEL { ∃ B ∈ Attacker (A): Evaluate (B, A ∪ Chain) = IN })

return OUT
if( PARALLEL { ∃ B ∈ Attacker (A): B ∈ Chain })

return UND
if( PARALLEL { ∃ B ∈Attacker (A): Evaluate (B, A ∪ Chain) = UND })

return UND
return IN

The action level here is therefore at the data level, looking for possible data partitioning
on which the argumentation process can be run in parallel.

Accordingly, in this section we discuss and address both perspectives, respectively in
Subsection 3.1 and Subsection 3.2.

3.1. Task parallelisation
Let us consider the algorithm discussed in Subsection 2.2. The purpose of this section is
to analyse the requirements and implications of its parallelisation. Note that the part
affected to parallelisation is encapsulated in the evaluate predicate, which is why in the
following we take into account that predicate only.

The algorithm structure is simple: the argument evaluation leverages the evaluation
obtained from its attackers—i.e., the attackers are recursively evaluated using the same
algorithm and the result is exploited to determine the state of the target argument.
Intuitively, a first point of parallelisation can be found in the search and evaluation of
the Attackers. Indeed, every condition exploited by the algorithm ((Cond1), (Cond2),
and (Cond3)) to evaluate an argument requires one and only one attacker to match
the constraint. Those conditions directly suggest an OR parallelisation in the search
and evaluation of the attackers. We could evaluate the arguments simultaneously under
different branches, and the success in one of the branches would lead to the success of
the entire search. Listing 2 shows the modified algorithm.

The algorithm exposes another point of parallalisation. As already hinted, the order
in the evaluation of the conditions is essential for the soundness of the algorithm—as
illustrated by the following example.

Example 2. Let us consider argument 𝐴 and its two attackers 𝐵 and 𝐶. Let it be the
case in which we know 𝐵 and 𝐶’s labelling, IN for the former and UND for the latter. If we
do not respect the order dictated by the algorithm, 𝐴’s labelling is either UND (condition
(Cond3)) or OUT (condition (Cond1)). Of course, the first result would be in contrast
with the original grounded semantic requirements for which every argument having an IN
attacker should be definitively OUT. Conversely, if we respect the evaluation order, 𝐴’s
labelling would be OUT in every scenario.

Although the evaluation order is strict, we can evaluate all the conditions simultane-



Listing 3: Evaluate predicate with parallel conditions evaluation

Evaluate (A, Chain ):
PARALLEL {

first = ∃ B ∈ Attacker (A): Evaluate (B, A ∪ Chain) = IN
second = ∃ B ∈ Attacker (A): B ∈ Chain
third = ∃ B ∈Attacker (A): Evaluate (B, A ∪ Chain) = UND

}
if(first) return OUT
if( second AND NOT first) return UND
if( second AND NOT first) return UND
if(NOT first AND NOT second AND NOT third) return IN

Listing 4: Evaluate predicate with both parallel conditions evaluation and parallel attackers

Evaluate (A, Chain ):
PARALLEL {

a = PARALLEL { ∃ B ∈ Attacker (A): Evaluate (B, A ∪ Chain) = IN }
b = PARALLEL { ∃ B ∈ Attacker (A): B ∈ Chain }
c = PARALLEL { ∃ B ∈ Attacker (A): Evaluate (B, A ∪ Chain) = UND }

}
if(a) return OUT
if(b AND NOT a) return UND
if(c AND NOT a) return UND
if(NOT a AND NOT b AND NOT c) return IN

ously and consider the ordering only while providing the labelling for the target argument
(mixing AND and OR parallelisation). Listing 3 displays the algorithm modified accord-
ingly. The three conditions are evaluated in parallel, but the result is given accordingly
to the defined priorities. If the first condition is met, the argument is labelled as OUT.
Conversely, even if the second or the third condition is met, one should first verify that
the first condition does not hold. Only then the argument can be labelled as UND.

Listing 4 contains the final version of the algorithm taking into account both points of
parallelisation.

3.2. Knowledge-base parallelisation
In the first part of our analysis, we focused on the parallelisation problem from a pure
computational perspective—i.e., we tried to understand if we can split the evaluation
task into a group of sub-task and then execute them simultaneously. However, there is
another perspective to take into account when parallelising: the one concerning the data.

Example 3. For example, let us consider a job computing the sum and the product of a
set of numbers. Using the sub-task approach, we could have two subroutines running in
parallel, one computing the sum and the other computing the product of the numbers.
However, leveraging the associativity property of sum and multiplication, we can split the



(a) (b)
Figure 2: Argumentation graphs and arguments from Example 4 grouped according to dependency
(a) and conflict-closure principles (b).

problem into a series of tasks computing both sum and product on a subset of the original
data. Then the final result would be the sum and the multiplication of the tasks’ results.

Let us suppose to apply the same principle to the argumentation task. We build
arguments from a base theory according to the relations illustrated in Subsection 2.1.
The logic theory is, for all intents, the input data of our algorithm (argumentation task).
Now, the question is if we can effectively split the data into sub-portions to be evaluated
in parallel without affecting the global soundness of the original algorithm.

Naive principle. Let us start with a naive solution in which we randomly split the
input theory between all the available nodes. Of course, this would lead to evident
contradictions.

Example 4. For instance, let us consider the following theory (left) and its mono-
lithic evaluation according to grounded semantic leading to four arguments (right):

r1 : ⇒ a
r2 : a ⇒ b
r3 : ⇒ b
r4 : ⇒ ¬ a

A0 : ⇒𝑟1 a
A1 : A0 ⇒𝑟2 b
A2 : ⇒𝑟3 b
A3 : ⇒𝑟4 ¬ a

where 𝐴0, 𝐴1 and 𝐴3 are labelled UND – since 𝐴0 and 𝐴3 attack each other and 𝐴3
attacks 𝐴1 – and 𝐴2 is labelled IN. If we leverage a random split, we could have a scenario
in which we partition the theory into four parts. Of course, this would lead to a missing
argument. Indeed, rules 𝑟1 and 𝑟2 are both necessary to conclude 𝐴1.

Dependency principle. Now, let us consider a smarter theory splitting principle based
on rules dependency—i.e., if two rules can be chained, they must stay together.

Example 5. Accordingly, if we consider the theory from example 4, we have three subsets
of the theory: 𝑟1 and 𝑟2, 𝑟3, 𝑟4. The evaluation of these three theories would lead to



the admissibility of all the four arguments, making the result unsatisfactory w.r.t. the
original solution (Figure 2 (a)).

Conflict-closure principle. Observing the abstract argumentation graph it is easy to
understand that we cannot split rules claiming conflicting knowledge (Figure 2 (b)).
Accordingly, we can observe that a safe split can be guaranteed if the graph-connected
sub-portions maintain their integrity—i.e., attacker and attacked arguments belong to
the same set.

Example 6. If we apply this principle to the theory in Example 4, we obtain two sub-
portions of the original logic theory allowing for a simultaneous evaluation: 𝑟1, 𝑟2 and
𝑟4 (set 𝐾𝐵𝑎), and 𝑟3 (set 𝐾𝐵𝑏). The application of the argument evaluation algorithm
(in Subsection 2.2) to check the admissibility of 𝑏 leads to two results: 𝑏 (𝐴1) is UND (set
𝐾𝐵𝑎), and 𝑏 (𝐴2) is IN (set 𝐾𝐵𝑏)—coherent with the semantics (Figure 2 (b)).

Accordingly, in order to guarantee a sound evaluation w.r.t. the original algorithm
(Listing 1) the last constraint – conflict-closure – on the theory splitting principle should
be considered, yet posing substantial limits on the task parallelisation. However, the
limitation can be overcome thanks to the algorithm presented in Subsection 3.1 (Listing
4), in which a parallelisation of the attackers’ evaluation is exploited. According to the
algorithm, the search and evaluation of the attackers are performed in a distinct subtask
(concurrent evaluation). Then, the reification of algorithm decomposition under the data
perspective means that we can split the knowledge concerning attacked and attackers
into separate sets, since the subtasks to evaluate an attacker require only the knowledge
to infer such an attacker—i.e., only the Dependency principle must be respected. Indeed,
there is no task requiring to know how to build an argument and its attacker – the
search is delegated to another process – thus, in case of adopting also the algorithm
parallelisation suggested in, the Conflict-closure principle can be neglected. Then, w.r.t.
data parallelisation, when combined with the algorithm parallelisation, a single subprocess
in charge of evaluating an argument needs only the portion of the theory needed to infer
the argument itself—i.e., the chainable rules concluding the target claim.

Example 7. Let us consider again the example 5 based on the rules dependency principle.
If we use the algorithm in Listing 4, the evaluation delivers the correct results. For
example, when we require the literal ¬𝑎 (𝐴3) evaluation, the consequent search for
attackers is carried on different processes, having different sub-portions of the original
logical theory. Between them, there is the one having in its knowledge base only the rule
𝑟4 – we saw in example 5 that according to the Dependency principle the theory has three
subsets: 𝑟1 and 𝑟2, 𝑟3, 𝑟4 – and thus concluding literal 𝑎, causing an undetermined result
as expected—there is a cycle in the inference chain. Indeed, it is not needed to have in
the same process rules 𝑟1, 𝑟2, 𝑟4 as Conflict-closure principle dictates.



4. The complete model
In the previous section we discussed how the parallelisation of the algorithm concerning the
admissibility of a single claim is feasible under multiple perspectives (namely, algorithm
and data). In this section, a complete and sound mechanism for the admissibility task in
a fully-concurrent way is provided, exploiting the insights from Section 3 and applying
them to an actor-based model [9].

In short, the actor model is based on a set of computational entities – the actors –
communicating each other through messages. The interaction between actors is the key
to computation. Actors are pure reactive entities that only in response to a message can:

• create new actors;

• send messages to other actors;

• change their internal state through a predefined behaviour or change their behaviour.

Actors work in a fully-concurrent way – asynchronous communication and message
passing are fundamental to this end – making the actor model extremely suited to
concurrent applications and scenarios. We choose this model for its simplicity: it presents
very few abstractions making it easy to study both how to model a concurrent system
and its properties. The final goal of this research is to provide a sound model for
agents’ cooperative argumentation in MAS. Since it is an articulated goal, coping with
different dimensions – distribution, sociality, coordination, autonomy – we carry on
our investigation in two distinct steps: 1) first, we enable concurrent evaluation of the
argumentation algorithms (focusing on distribution), 2) then, we make available the new
computational tool in a MAS context (focusing on sociality, coordination, and autonomy).
The actor model, which is the contribution of this work, is a natural choice for the first
step of the analysis.

The proposed model embraces both the parallelisation approaches seen in Section 3—
i.e., the parallel evaluation of attackers (task parallelisation, Subsection 4.2) and the
partitioning of the initial logical theory (data parallelisation, Subsection 4.1).

4.1. Actor-based evaluation: distributing the knowledge base
Let us start with the portion of the model devoted to logic theory distribution according

to the Dependency principle in Subsection 3.2. Since the actor model focuses on actors
and their communication the following design will review the structure and behaviour of
the involved actors.

Two main types of actors are conceived in the system: master (Listing 5) and worker
(Listing 6). Master actors coordinate the knowledge base distribution phase while the
workers hold a portion of the theory. Accordingly, masters’ internal state contains a
reference to the term to distribute (elem) and a list of the feedbacks from the workers’
actors on elem distribution (responseList), while workers’ internal state is simply
represented by the portion of the theory they manage, identified by kb.



Listing 5: Master Actor for knowledge base distribution

MasterActor :

State:
responseList
elem

OnMessage (sender , message ):
if message = AddTheoryMember (term)

send(ALL , NewTheoryMember (term ))
responseList = []
elem = term

if message = Ack( chainingDetails )
responseList += Ack( chainingDetails )
evaluateResponses ( responseList )

if message = Nack ()
responseList += Nack ()
evaluateResponses ( responseList )

evaluateResponses ( responseList ):
if NOT ALL RESPONSE ARE PRESENT :

return
if NO ACK IS PRESENT :

cretateNewActor (actor)
send(actor , CreateKnowledgeBase (elem ))

if CONVERGING KB ARE PRESENT :
selectMergeTarget ( target )
FOR x IN createMergeList ( responseList ):

send(x, MergeTheory ( target ))

Messages that masters and workers can exchange are represented by the following
types:

• CreateKnowledgeBase, the first message sent from the master to a new worker
containing its initial knowledge base;

• NewTheoryMember, sent from the master to all the available workers, through which
the master sends the new theory member to be stored in the workers’ kb;

• Ack, sent from a worker to its master in response to a NewTheoryMember message,
confirms the storing of the new rule in the worker’s kb;

• Nack, sent from a worker to its master in response to a NewTheoryMember message,
denies the storing of the new rule in the worker’s kb;

• MergeTheory, sent from the master to a set of workers in the case of overlapping
theories, orders the workers to conclude their execution after sending their knowledge
bases to a targeted worker;



Listing 6: Worker Actor for knowledge base distribution

WorkerActor :

State:
kb

OnMessage (sender , message ):
if message = CreateKnowledgeBase (term)

kb = term
if message = NewTheoryMember (term)

if isChainable (term , kb):
send(sender , Ack( chainingDetails ))
kb += term

else:
send(sender , Nack ())

if message = MergeTheory ( target )
send(target , Kb(kb))
exit

if message = Kb(newKb)
kb += newKb

• Kb, sent from a worker A to another worker B, contains the knowledge base that B
should add to its own.

If the master receive the order to add a new element to the theory (AddTheoryMember
message), three possible scenarios can be configured:

1. none of the workers contains a compatible knowledge base – i.e., it is not possible
to chain the new rule to the knowledge base (isChainable returns false) – and
consequently, the master creates a new worker containing the portion of the theory
(createNewActor);

2. one or more workers have a compatible knowledge base (isChainable returns true),
and they add the element to their kb;

3. a set of workers possess overlapping knowledge bases – i.e. the union set of
workers’ knowledge bases can be used to create a unique inference chain –, and
as a consequence, we merge their knowledge bases and destroy the extra workers
(MergeTheory message);

Since actors are reactive entities, in order to completely adhere to the actor model the
master knowledge base can be changed from outside the actor system—we instruct the
master actors to modify the theory through the message AddTheoryMember.

Example 8. Let us consider again the theory in Example 1. Let us assume a single
MasterActor and the following order in the inclusion of the rules in the system: 𝑟1,



𝑟3, 𝑟4, 𝑟22. As for the first three rules, the behaviour is the same: the MasterActor
issue a NewTheoryMember and receives back only Nack messages—since the rules are not
chainable. Accordingly, it creates three distinct workers and sends to every one of them a
single rule via the CreateKnowledgeBase message. We now have Worker 1, Worker 2,
and Worker 3 with respectively 𝑟1, 𝑟3 and 𝑟4 in their knowledge bases. Then the master
issues a NewTheoryMember for 𝑟2, and both workers 1 and 3 answer with an Ack. Rule
𝑟2 is, in fact, the missing link in the inference chain of 𝑟1 and 𝑟4. As a consequence,
the Master orders a migration to one of them – let us assume Worker 3 – with the
MergeTheory message. Worker 3 receives the message, sends its kb to Worker 1 via the
Kb message and then stops. At the end of the distribution phase, we have two workers,
one containing 𝑟1, 𝑟2, and 𝑟4, and the other only 𝑟3. The dependency principle is thus
respected.

4.2. Actor-based evaluation: evaluating an argument
Let us proceed with the actor-based evaluation of an argument. For this task, we

only need one type of actor—WorkerActor in Listing 7. In the final model, we consider
workers from Listing 6 and Listing 7 as the same entity. We can evaluate an argument
through workers only after they split the logic theory among them according to the
mechanism in Subsection 4.1.

Each actor is responsible for evaluating those arguments that can be build using its
portion of the theory. When the actor receives an evaluation request, it first checks if
attackers exist, w.r.t. its knowledge. Then the actor can: 1) register the impossibility to
evaluate the argument – only if a cycle through the evaluation chain is detected –, 2)
require the attacker arguments evaluation to all the other actors. In the latter case, the
actor shall answer the original evaluation request only after receiving a response from
others actors. The conditions to match while evaluating an argument are the same as
the original algorithm in Listing 1:

• if one counterargument is found admissible, we evaluate the argument as OUT;

• if any number of actors votes for the argument undecidability with none voting for
the rejection, we mark the argument as UND;

• if all the actors agree that no counterarguments can be provided as acceptable, we
evaluate the argument as IN;

Actors provide their suggestion on the state of the requested argument according to all
the labels of their counterarguments.

The messages exchanged among worker actors are:

• Evaluate, sent to workers (from outside) to require the evaluation of a claim;

• Attacker, sent from a worker to all other workers, requires the evaluation of an
argument;

2Note that the inclusion order does not affect the final state of the system but only the steps required
to converge.



Listing 7: Worker Actor for argument evaluation task

WorkerActor :

State:
targets

OnMessage (sender , message ):

if message = Evaluate (claim ):
if buildArgument (claim , arg ):

send(ALL , Attacker (arg , []))

if message = Attacker (arg , chain ):
if NOT buildAttacker (arg ):

send(sender , In(arg ))
else:

for attacker IN buildAttacker (arg ):
if attacker IN chain:

targets += (arg , attaccker , sender , [], Und(arg ))
else:

send(ALL , Attacker (attacker , chain + [arg ]))
targets += (arg , attaccker , sender , [], None)

evaluateResponses ()

if message = Und(arg) OR Out(arg) OR In(arg ):
evaluateResponses (arg)

evaluateResponses (arg ):
for arg , attacker IN targets :

if ANY OUT:
targets [ attacker ] = Out(arg)

if ANY Und AND NOT ANY OUT:
targets [ attacker ] = Und(arg)

if ALL In:
targets [ attacker ] = In(arg)

if attackersEvaluated (arg ):
sendResponse ( sender )

• Und, Out, In – sent from a worker to another worker in response to the Attacker
message – answering the evaluation request.

Note that the Evaluate message comes from outside the actor system and starts the
evaluation process. In Listing 7, we omit the details on the collection of the Evaluate
responses and the return of the final result for the sake of conciseness.

Example 9. Let us continue the example from 1 and 8 and require the evaluation of claim
𝑏. From outside the actor system, we send an Evaluate message to all the actors. Worker
1 succeeds in building an argument (𝐴1) and sends to all the other Workers – also Worker
1 is included in the list – an Attacker message requiring attackers evaluation. Worker 1



answers with an In message – there are no attacking arguments according to its knowledge
–, while Worker 2 sends back an Und response. Indeed, Worker 2 is able to create a valid
counterargument (𝐴2), but a cycle is detected in the inference chain. According to the
evaluation algorithm, receiving an Und and an In as a response, Worker 1 can finally
label 𝐴1 as UND.

5. Related & Conclusions
The work presents a first approach to the problem of cooperative argumentation in the
context of a MAS. Starting from the single query evaluation mode of Arg-tuProlog –
aimed at evaluating the admissibility of a single statement without the need to build the
entire argumentation graph – we introduce the corresponding distributed computational
model. We first discuss how the argument evaluation algorithm of Arg-tuProlog can be
parallelised, then we deliver a complete model for decentralised reasoning based on the
actor model.

Our work follows the insights from the ones in [10] and [11, 12]. The former has
been the first proposal of a tool – also based on the tuProlog system – exploiting a
dialogical argumentation mechanism—i.e., argumentation is performed across multiple
processes proposing arguments and counterarguments. However, attempts to develop it
in a completely distributed mode has not been made. Conversely, in [11, 12] the authors
directly address the problem of enabling argumentation techniques in MAS. Nonetheless,
their technique exploits a centralised evaluation of all the knowledge spread across MAS
agents, thus exposing serious problems to the scalability of their approach.

Our work can be extended in various directions. First, we shall provide an implemen-
tation of the model in the Arg-tuProlog framework. After that, it will be possible to
compare the performances of the monolithic and distributed versions of the algorithm
properly addressing a discussion on efficiency and scalability issues.

Then, a well-founded analysis of the model, taking into account its soundness is
required.

Moreover, experiments need to be run in a MAS context. There, the open issues are
many, e.g., how could agents benefit from this mechanism? Or, how could the use of
coordination media impact on the actual model?

Finally, it is worth highlighting that in this work we distribute the knowledge base
across actors in order to maximise the scalability of the system. The consequences of
using the model in a context where the nodes possess an arbitrary knowledge – as agents
in MAS – is still to be inspected.
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