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Abstract
Nowadays, micro-mobility sharing systems have become extremely popular. Such systems consist in
fleets of electric vehicles which are deployed in cities, and used by citizens to move in a more ecological
and flexible way. Unfortunately, one of the issues related to such technologies is its intrinsic load
imbalance; since the users can pick up and drop off the electric vehicles where they prefer. We present
ESB-DQN, a multi-agent system based on Deep Reinforcement Learning that offers suggestions to pick
or return e-scooters in order to make the fleet usage and sharing as balanced as possible.
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1. Introduction

In the last few years, micro-mobility sharing systems have become extremely popular. More
and more companies are purchasing fleets of electric vehicles to be deployed in many cities
around the world, allowing users to easily rent vehicles via a smartphone app. The last trend is
to offer a so-called ”free-floating” or ”dockless” service related to e-scooters, e-bikes or e-moped:
the vehicles can be picked-up or dropped-off anywhere within an operational area designed by
the service provider [1, 2].

The great flexibility of such a service comes with the challenge of unpredictable usage
patterns, with the result of an imbalanced distribution of the electric vehicles around the city.
Moreover, battery capacity is limited and many vehicles can rapidly become out-of-charge
during the day. In order to preserve a good quality of service despite of imbalance problems
and battery limitations, companies need to devote a large operational effort for an efficient fleet
management [3].

Typically, specialised workers are employed to accomplish two different tasks, namely battery
swap and relocation. Battery swap refers to the process of inserting new batteries into out-of-
charge vehicles, whereas relocation refers to the process of moving vehicles from one zone to
another in order to rebalance the fleet distribution [4].

Quantity of workers, modality and frequency associated to battery swap and relocation
operations represent crucial aspects in the definition of an efficient fleet management policy. A
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critical trade-off is required to avoid high operational costs and, at the same time, maximize
the usage of vehicles. Recently, users engagement has been proposed as a viable solution to
alleviate the aforementioned problems. As a result, nowadays several companies engage users
in various ways to solve the imbalance and the battery limitation problem [5, 6, 7].

In this work, we present ESB-DQN, a multi-agent system based on Deep Reinforcement
Learning capable of proposing convenient alternative locations for picking up or returning
e-scooters. Every time a user is willing to rent an e-scooter, he/she is encouraged to accept
alternative pick-up or drop-off points in exchange for monetary incentives.

Based on demand forecast models and artificial intelligence techniques, the ESB-DQN system
is able to learn the best recommendations for the users, in order to optimize the vehicle avail-
ability and, at the same time, minimize the number of battery swap and relocation operations.
As a result, the system is able to improve service efficiency and to increase revenues of the
service provider. Provided with a smart monetary incentive mechanism, the system is also
intended to improve customers’ satisfaction and fidelity.

The main contributions of our paper are the following:

• an innovative customer-oriented rebalancing strategies has been defined through a multi-
agent system based on deep reinforcement learning;

• an existing simulator of mobility sharing systems has been integrated with a state-of-the-
art library for deep reinforcement learning;

• simulations based on real data have been carried out to preliminary quantify the benefits
of the proposed approach.

The paper is organized as follows. Section 2 contains an overview of related works. Section 3
describes the materials and the methods used throughout this research. Section 4 presents the
experiments that have been carried out as well as the corresponding results. Section 5 concludes
the paper with discussions and possible future works.

2. Related works

The recent work by Wen and colleagues [7] provides a comprehensive overview of the rebalanc-
ing strategies used to alleviate the imbalance problem in bike sharing systems. Strategies have
been classified according to twomain categories: truck-based rebalancing and customer-oriented
rebalancing.

Truck-based rebalancing refers to the relocation operations mentioned so far. A specialized
group of workers is in charge of moving vehicles from one zone to another by means of trucks.
On the other hand, customer-oriented rebalancing is the process of encouraging users to adopt
efficient behaviours by providing incentives, which is the main topic of our investigation.

Most of the past works on rebalancing strategies are not targeted towards ”free floating”
systems. In particular, papers investigating truck-based rebalancing determine the optimal
inventory for each station and design the optimal truck route with budget constraint [8, 9].
Analogously, paper investigating customer-oriented rebalancing ponder the role of the stations
in the incentive proposals [5, 6, 7].



In our work, both of the rebalancing strategies have been taken into account: truck-based
rebalancing is implemented through the simulator, whereas customer-oriented rebalancing is
implemented through the reinforcement learning system.

Few other works employ Deep Reinforcement Learning to investigate user incentives in bike
sharing systems, including [10, 11]. However, their objective is to determine an optimal pricing
mechanism, whereas the objective of our work is to determine optimal pick-up/drop-off zones
for each booking request.

3. Materials and methods

3.1. Data

To investigate the free-floating imbalance problem, we rely on actual e-scooter trips open data
published by the Municipality of Louisville1, Kentucky. The data comes fuzzed both in time
and space for privacy reasons; in particular, each trip has any time-related information rounded
to the closest quarter of an hour and any space-related information rounded at the 3rd decimal
for both latitude and longitude. Hence, we follow the disaggregation procedure described in [4]
such that each trip retains a unique Id, the duration, the distance, the start time, the end time,
the start location and the end location. The main characteristics of the dataset are summarized
in Table 1. They refer to a training window of observations registered over the whole year 2019.
The number of trips in the simulation, denoted as N trips sim refers to a simulation window of
observations over one single day, namely January 01, 2020.

Table 1
Main characteristics of Louisville dataset

City N scooters Avg trip dur. (s) Avg trip dist. (m) N zones N trips train N trips sim

Louisville 800 814 1601 279 199 789 154

Louisville’s e-scooter ecosystem has rather limited complexity, reflecting heterogeneous
temporal and spatial demands at the same time. Nonetheless, in order to further ease the
formulation of the problem, the whole operative area in the city of Louisville has been quantized
in a set 𝒵 of 𝑙 × 𝑙 square zones as proposed in [4]. As a result, the start/end locations of each
trip report the Id of the corresponding zone membership. Each zone 𝑧𝑖 ∈ 𝒵 is associated with a
set of valid 1-hop neighbours 𝒩𝑧𝑖 , i.e. the zones among the 8 adjacent zones registering at least
one booking request within the training window of observations. As it can be seen in Figure 1,
many of the zones do not have a full set of valid 1-hop neighbors, i.e. |𝒩𝑧𝑖 | ≠ 8. In fact, almost
all of them do not, with a grand total space of valid neighbors, 𝒩𝑣𝑎𝑙𝑖𝑑, amounting to only the
60.6% of the whole space of possible neighbors 𝒩 ⋆, with |𝒩 ⋆| = 279 ∗ 8 = 2232.

Both the large subset of invalidity, 𝒩𝑖𝑛𝑣𝑎𝑙𝑖𝑑, and the tiny simulation window of observations
over January 01, 2020 only, are further discussed in Section 4 as they play a key role in the
reasoning behind the training of the ESB-DQN multi-agent system.

1https://data.louisvilleky.gov/dataset/dockless-vehicles



Figure 1: Characterization of zones in the city of Louisville, following a heatmap color scale on the
number of average trip requests per zone in 2019. Credits to [4].

3.2. Simulator

A modified version of the SimPy-based simulator presented in [4] has been used to simulate
e-scooter sharing system dynamics in Louisville. A formal description of the simulator follows:

Fleet and zones. Let 𝒮 be the fleet of e-scooters. At any time 𝑡, each e-scooter 𝑠 ∈ 𝒮 is
characterised by a unique plate Id, the state of availability, the state of charge of the battery
𝑏(𝑠) ∈ [0, 𝐵], with 𝐵 being the battery capacity, and the location 𝑙(𝑠) as a zone Id in 𝒵.

Trip requests. The simulator processes trip request events by directly reading them from the
input trace over 2019. When the 𝑖-th trip request event fires at time 𝑡𝑖, the simulator checks
whether there is any e-scooter 𝑠 with enough residual energy, i.e., 𝑏(𝑠) ≥ 𝑒𝑖, being 𝑒𝑖 the energy
to complete such trip, either available in the same zone or in the 1-hop neighboring zones (i.e.,
the 8 surrounding zones). This is equivalent to assume that customers will by default rent the
nearest available e-scooter having enough battery charge.

Incentive proposals. In alternative, users are incentivized to pick-up and/or drop-off the vehicle
from/to a different zone (in a limited nearby area). They randomly accept or decline the proposal
according to a willingness factor 𝑤 ∈ [0, 1], and eventually get their incentive once the trip has
been completed. If no alternative pick-up proposal is accepted and no scooter is available in the
1-hop neighboring zones, the trip request is marked as unsatisfied.

Trip completion. Once the pick-up zone 𝑝(𝑖) and the drop-off zone 𝑑(𝑖) are defined, a trip-end
event is scheduled at time 𝑡𝑖 + 𝛿𝑡𝑖, being 𝛿𝑡𝑖 the duration of the rental - drawn from a Gaussian
distribution with mean 𝜇 equal to the duration of the trip reported in the trace, and standard



deviation 𝜎 equal to 4 minutes, as a form of variability. When the trip-end event fires, the
simulator makes the e-scooter 𝑠 back available in position 𝑑(𝑖), and updates its battery charge
𝑏(𝑠) = 𝑏(𝑠) − 𝑒(𝑖). If 𝑏(𝑠) < 𝛼𝐵, with 𝛼 the operability threshold ∈ [0, 1], the scooter 𝑠 is marked
as dead and is no longer available until a battery swap operation is performed.

Battery swap. Once every 𝑇𝑠 time steps, a fleet of 𝑛swap battery swap workers is triggered to
perform battery swaps operations. Each worker is assigned a battery swap schedule, which
consists of up to 𝑛𝑣 vehicles to be re-charged inside several zones. Battery swap schedules are
created and assigned with the following criteria: we compute the battery charge deficit for each
zone 𝑧 at time 𝑡, Δ𝑠(𝑡, 𝑧), with 𝑡 = 𝑘𝑇𝑠, as the number of dead vehicles waiting for service in 𝑧.
Then the zone 𝑧𝑜 with the least deficit is identified, and a priority 0 queue is constructed for all
the other 𝑛 − 1 zones, with priority defined as:

𝑝(𝑡, 𝑧) = 1
Δ𝑠(𝑡, 𝑧)

+
𝑑(𝑧, 𝑧𝑜)

max(𝑑(𝑧𝑗, 𝑧𝑜)𝑗=1,...,𝑛)

with 𝑑(𝑧𝑖, 𝑧𝑘) being the Haversine distance between the i-th and the k-th zone. Each worker is
then assigned a subset of the queue, potentially across multiple zones, following a lump sum
costs policy whose goal is to construct a schedule that keeps the expected profit in the next
𝑇𝑠 time steps, 𝑃𝑠𝑤𝑎𝑝,𝑡+𝑇𝑠 , higher than the expected battery swap costs, 𝐶𝑠𝑤𝑎𝑝,𝑡: an average cost
of service has to be assumed for each vehicle, 𝐶𝑣. As soon as all the workers have an assigned
schedule as a sequence of zone Ids, the shortest path to completion is computed for each of
them by solving an equivalent TSP optimization problem. Once all the battery swap operations
are completed, the workers wait as idle in their last zone on schedule.

Relocation. Once every 𝑇𝑟 time steps in a limited working time interval 𝑇work, a fleet of 𝑛rel
relocation workers is triggered to perform relocation operations. Each worker is assigned a
relocation schedule, which consists of up to 𝑛𝑣 vehicles to be moved from some zones to others
in order to balance the system. Relocation schedules are created following a similar criteria
to what has been described above: a deficit Δ(𝑡, 𝑧) is computed for each zone 𝑧, a priority 0
queue is computed off of that and a number of schedules are first generated following a lump
sum costs policy and then optimized via TSP. In this case, Δ(𝑡, 𝑧) is computed observing the
availability of e-scooters with respect to the expected inward and outward flows for the zone 𝑧
at time 𝑡 computed over 2019 following the predictive model proposed in [4].

Initialization. At start time, e-scooters are randomly placed among the zones of the grid with
uniform random charge 𝑏(𝑠) ∈ [𝐵/2, 𝐵]. Afterwards, both relocation and battery swap workers
are similarly placed with uniform random among the 30 zones that have registered the highest
demand in the training data over 2019. This is equivalent to assume the existence of landmarks
within the city of Louisville that require a higher concentration of e-scooters.

3.3. ESB-DQN multi-agent system

A multi-agent system has been designed, in charge of proposing alternative pick-up/drop-off
zones to the users in change of incentives. In particular, two agents are defined: a pick-up



agent, 𝐴𝑝, and a drop-off agent, 𝐴𝑑. At every generated trip request 𝑖 with pick-up zone 𝑝(𝑖)
and drop-off zone 𝑑(𝑖), the pick-up agent proposes an alternative pick-up zone ̂𝑝(𝑖), whereas
the drop-off agent proposes an alternative drop-off zone ̂𝑧(𝑖). Both proposals share the same
ultimate goal of improving the long-term balance of the system, while reducing the overall
costs of service due to general maintenance, battery swap ops and relocation ops.

The next three paragraphs describe the fundamental components of the E-scooter Balancing
DQN, or ESB-DQN for short, multi-agent system.

3.3.1. Environment

The environment wraps the modified simulator described in Section 3.2 to make it compliant
with DeepMind’s DQN Zoo library for reinforcement learning [12]. It is a fully observable
environment which produces a 𝑛 × 3 state vector X𝑡 at every trip request 𝑖 at time 𝑡:

X𝑡
𝑛×3

= [𝐴(𝑛×1) 𝐵(𝑛×1) 𝐶(𝑛×1)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1 𝑏1 0
𝑎2 𝑏2 0
⋮ ⋮ ⋮
𝑎𝑝 𝑏𝑝 1
⋮ ⋮ ⋮
𝑎𝑑 𝑏𝑑 1
⋮ ⋮ ⋮
𝑎𝑛 𝑏𝑛 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

with 𝑛 = |𝒵 | the total number of zones, 𝐴 the 𝑛 × 1 column vector with the number of
available vehicles per zone 𝑧 at time 𝑡, 𝐵 the 𝑛 × 1 column vector with the deficit Δ(𝑡, 𝑧) per zone
𝑧 with respect to the expected optimal baseline at time 𝑡, introduced in Section 3.2, and 𝐶 the
two-hot encoded vector with 1s in correspondence of 𝑝(𝑖) and 𝑑(𝑖) only.

The vectors 𝐴 and 𝐵 are standardized via z-normalization to achieve a mean of 0 and and
a standard deviation of 1. 𝐶 plays the role of a de-facto attention mechanism within the state
X𝑡 itself. Indeed, it signals which zones of the operative area may be subject to alterations
in the near future leading towards the state transition X𝑡 to X𝑡+1, which may reflect in how
knowledgeable the alternative proposals are.

Despite a detailed action space definition follows in the next paragraph, it is important to
note that the ESB-DQN environment belongs to the family of constrained environments, i.e.,
the setting of our problem falls within constrained Deep Reinforcement Learning. There are
a number of ways to approach constraint-guided interactions to lead RL agents towards safe
behaviour in their exploration. For example, an exploration pattern often persevered is to
pretend those unsafe actions do not exist altogether, by strictly avoiding them from the range
of actions the agents can pick. Or again, a terminal state may be invoked each time an invalid
action is taken, and a new episode started over hoping for better fortune. Here instead, we focus
on the third popular paradigm of constrained RL, that is, to let the invalid action pass through,
but awarding the agent committing it a strongly penalized reward. Indeed, [13] show that this
approach is actually the most beneficial under most constrained RL settings to augment the



interaction capabilities of the agents with the surrounding environment, while not altering nor
interrupting too abruptly their perception of it. The only limitation of this approach is that the
harshly penalized reward should be ensured to be at least an order of magnitude smaller than
the lowest possible reward achievable as a result of a valid action. Our approach is similar to
[13], as we define a fall-back action, or NOP, that, as the name itself says, the agents can fall
back to whenever they pick an invalid action, getting severely penalized as a result, to prompt
the continuity of the simulation. In Section 3.4 we further explore this continuity while training
the ESB-DQN system, by introducing the concept of lives, borrowed from Atari games [14].

3.3.2. Agents architecture

The agents are Deep-Q-Networks (DQN) implementing an 𝜖-greedy policy with experience
replay [14] belonging to the family of Q-learning. It is an off-policy approach towards deep RL
wherein the agent estimates the expected reward for future actions from a given state without
following an actual greedy policy, but instead relying on a behaviour policy enriched from
direct experience with the environment to update the online policy, by satisfying Bellman’s
optimality equation. Such an approach is better suited for large state spaces, 𝒮, against rather
limited action spaces, 𝒜, which we will see to be our case. In fact, they are Rainbow agents,
a state-of-the-art DQN agents, which we have found beneficial for the three following main
features: double Q-learning helps in preventing overestimation of the action values which
may lead to very unpleasant proposals; distributional Q-learning helps in investigating the
importance of the value distribution, which we find necessary to achieve long-term balance of
the ESB-DQN system; prioritized experience replay helps in selecting the subset of previously
experienced observations that are the most relevant, which we find necessary to characterize
the complexity of the dynamics behind a free-floating sharing system [15].

Both the pick-up agent and the drop-off agent comprise a funnel-like three-layer fully con-
nected network (i.e., MLP) with ReLU activation functions, whose role is to flatten the input
and extract a latent representation as a single vector of 256 units. The input of the network
is the last observed environment state, X𝑡, whereas the output feeds the standard Rainbow
network that produces a distribution of logits, whose maximum value identifies the action
picked by each agent, 𝑎𝑃,𝑡 and 𝑎𝐷,𝑡, respectively. The action space is limited to 9 different
choices, corresponding to the 8 cardinal directions mapping the 8 adjacent zones (i.e., 1-hop
neighborhood) plus the calling zone, 𝑝(𝑖) or 𝑑(𝑖) respectively, which function as the NOP actions.

Following this formulation of the action space, and recalling Figure 1, it becomes clear why
the ESB-DQN environment is constrained by a large set of invalid actions. In fact, in the early
stages of the RL agents life-cycle, the expectation of picking an invalid action from any given
zone 𝑧 at any given time 𝑡 far exceeds its complementary, which is further evidence of the need
for outer aid for the RL agents to well characterize the dynamics of the system.

3.3.3. Reward

The following functions are defined to compute the reward:



𝜔(𝑧, 𝑡) = Δ(𝑧, 𝑡) exp [− ( 1
𝑑(𝑧, 𝑡)+

𝑁𝐴(𝑧, 𝑡)+ )
sign(Δ(𝑧,𝑡))

] (2)

𝜓(𝑧, 𝑡) = 𝑁𝐷(𝑧, 𝑡) exp (−
1

𝑑(𝑧, 𝑡)+
𝑁𝐴(𝑧, 𝑡)) (3)

where:

• Δ(𝑧, 𝑡): expected deficit of e-scooters at zone 𝑧 at time 𝑡;
• 𝑑(𝑧, 𝑡): future demand of e-scooters in 𝑧 at time 𝑡 (in a time interval 𝑡 + Δ𝑡);
• 𝑁𝐴(𝑧, 𝑡): number of available e-scooters in 𝑧 at time 𝑡;
• 𝑁𝐷(𝑧, 𝑡): number of dead e-scooters in 𝑧 at time 𝑡;
• (⋅)+ denotes the function max(⋅ , 1) and is used to prevent from division by zero.

Drop-off agent. Let �̂�(𝑖) be the chosen alternative drop-off zone for trip 𝑖 at time 𝑡, 𝒩�̂�(𝑖) be the

set of valid neighbours around �̂�(𝑖). If the state of charge of the vehicle 𝑠 at the end of the trip is
greater than the battery swap threshold, i.e. 𝑏(𝑠) − 𝑒𝑖 ≥ 𝛼𝐶, then the reward corresponding to
each of the alternative zones 𝑧 ∈ 𝒩�̂�(𝑖) is:

𝑅𝐷(𝑧, 𝑡) = {
𝜔(𝑧, 𝑡) if �̂�(𝑖) = 𝑧
−𝜔(𝑧, 𝑡) otherwise

Otherwise:
𝑅𝐷(𝑧, 𝑡) = {

𝜓(𝑧, 𝑡) if �̂�(𝑖) = 𝑧
−𝜓(𝑧, 𝑡) otherwise

The overall reward for the choice �̂�(𝑖) is:

̄𝑅𝐷 (�̂�(𝑖), 𝑡) =
⎧

⎨
⎩

1

|𝒩�̂�(𝑖)|
∑𝑧∈𝒩�̂�(𝑖)

𝑅𝐷(𝑧, 𝑡) if drop-off action is valid

−𝛾𝐷max𝑧∈𝒩�̂�(𝑖)
|𝑅𝐷(𝑧, 𝑡)| otherwise

with 𝛾𝐷 being a constant which modulates the penalty of an invalid drop-off action.
Pick-up agent. Let ̂𝑝(𝑖) be the chosen alternative pick-up zone for trip 𝑖 at time 𝑡, 𝒩 ̂𝑝(𝑖) be the

set of valid neighbours around ̂𝑝(𝑖). The reward corresponding to each of the zones 𝑧 ∈ 𝒩 ̂𝑝(𝑖) is:

𝑅𝑃(𝑧, 𝑡) = {
−𝜔(𝑧, 𝑡) if ̂𝑝(𝑖) = 𝑧
𝜔(𝑧, 𝑡) otherwise

The overall reward for the choice ̂𝑝(𝑖) is:

̄𝑅𝑃 ( ̂𝑝(𝑖), 𝑡) = {

1
|𝒩 ̂𝑝(𝑖)|

∑𝑧∈𝒩 ̂𝑝(𝑖)
𝑅𝑃(𝑧, 𝑡) if pick-up action is valid

−𝛾𝑃max𝑧∈𝒩 ̂𝑝(𝑖) |𝑅𝑃(𝑧, 𝑡)| otherwise

with 𝛾𝑃 being a constant which modulates the penalty of an invalid pick-up action. Figure 2
shows some examples of the reward function 𝑅𝑃 for different values of the parameters Δ, 𝑑.



Figure 2: Pick-up action: some examples of the reward function 𝑅𝑃 for different values of the parameters
Δ, 𝑑. (Upper row) Negative reward: the agent suggests to pick-up a vehicle from a zone having an
expected deficit of vehicles (Δ > 0). As Δ and 𝑑 increase, the reward is smaller because the expected
deficit condition will be worsened. In both cases, the larger the number of available vehicles the higher
the curve, as the deficit condition will be alleviated. (Bottom row) Positive reward: the agent suggests
to pick-up a vehicle from a zone having an expected surplus of vehicles (Δ < 0). The larger Δ the larger
the reward, reflecting how problematic the surplus being improved. Similarly, when the number of
available vehicles is high, the rebalancing effect is considered more valuable. As the demand 𝑑 increases,
the reward decreases because the pick-up may negatively affect the long-term balance of the zone.

3.4. Lives mechanism

Aswe have anticipated in Section 3.3, amajor role during the training of the ESB-DQN system has
been played by the parameter regarding the number of lives, 𝑘. The continuity of the simulation
is a key factor for the eventual learning of the RL agents, as interrupting the simulation to just
start it over too often, as soon as an invalid action happens, would slow down the convergence
by a considerable margin, given how full of potential invalid actions ESB-DQN environment is.

To overcome this limitation, we have borrowed the concept of lives from Atari: every time
one of the two agents or both commit an invalid action, the whole environment loses a life.



By doing so, an invalid action does not immediately lead to a terminal state, but takes it closer
to the ESB-DQN state. On life loss, the discount for the timestep 𝑡 is zeroed, cancelling any
connection between the previous and later events, and the agents are set to perform a NOP.

Let 𝑎𝑡 = (𝑎𝑡 ,𝑃, 𝑎𝑡 ,𝐷) be the generic action for the simulator taken at time 𝑡, defined as the
resulting combination of the action picked by the pick-up (P) agent, 𝑎𝑃,𝑡, and the action picked
by the drop-off (D) agent, 𝑎𝐷,𝑡. The set of invalid actions has been set as follows:

• Either zone corresponding to 𝑎𝑃,𝑡 or 𝑎𝐷,𝑡 is invalid: 𝑧𝑃,𝑡 ∉ 𝑍 ∪ 𝑧𝐷,𝑡 ∉ 𝑍, with 𝑍 the set of
valid zones of the city of Louisville;

• The zones corresponding to 𝑎𝑃,𝑡 and 𝑎𝐷,𝑡 are equal: 𝑧𝑃,𝑡 = 𝑧𝐷,𝑡;
• The zones corresponding to 𝑎𝑃,𝑡 and 𝑎𝐷,𝑡 are equal to the original zone of opposite type:
𝑧𝑃,𝑡 = ̂𝑧𝐷,𝑡⋃𝑧𝐷,𝑡 = ̂𝑧𝑃,𝑡;

• The original zones ̂𝑧𝑃,𝑡 and ̂𝑧𝐷,𝑡 are equal: ̂𝑧𝑃,𝑡 = ̂𝑧𝐷,𝑡;
• The suggested pick-up zone does not have a suitable vehicle ready: 𝑉𝑃,avail = ∅

As soon as 𝑘 reaches 0, then the simulation is stopped. Indeed, we would not want our RL
agents to learn the dynamics of the environment while committing thousands of errors.
It is important to note that by implying the concept of lives, the training framework of RL
agents, has turned into a sort of collaborative RL framework, wherein both 𝑃 and 𝐷 cannot rely
solely on their capabilities to reach the goal, but even on the other’s to reach a common goal: if
𝐷 was to lose a life, 𝑃 would lose it as well, and viceversa.

4. Experiments and Results

The ESB-DQN system has been trained to learn the best alternative zone proposals through-
out simulations with the Louisville dataset. The aim of the experiments has been to evaluate
whether incentivizing users to pick-up/drop-off vehicles in alternative zones can preserve a
good quality of service with a reduced number of relocation and battery swap workers.

The quality of service is measured through the satisfied demand 𝐷sat, defined as follows:

𝐷sat =
𝑁trips − 𝑁unsat

𝑁trips
(4)

where 𝑁trips is the total number of trips, 𝑁unsat is the number of unsatisfied trips (no available
vehicles in the pick-up zone and in the 1-hop neighbourhood), both measured over a given fixed
time interval 𝑇sim. Through all our experiments, 𝑇sim is equal to 1 day.

The parameters of the simulator have been set as follows:

• the number of available e-scooters is |𝒮| = 400;
• the size of the zones is 𝑙 = 200𝑚2;



• the battery capacity is 𝐵 = 425Whwith 𝛼 = 0.3, whereas the energy required to complete
a trip is proportional to the driving distance by a factor of 11 Wh/km (as suggested in
[4]);

• the user willingness is 𝑤 = 1;
• the battery swap operations are scheduled every 𝑇𝑠 = 1h;
• the relocation operations are scheduled every 𝑇𝑟 = 1h in a working time interval 𝑇work =
[9AM-6PM].

The fleet size |𝒮| and the user willingness 𝑤 immediately stand out from the lot of parameters.
The former has been set to half the nominal fleet size granted by the city of Louisville. Indeed,
as further experiments on cities with more complex dynamics have not been conducted for
the time being, we have decided to restrict Louisville to a worst case scenario, as the quality of
service would remain strong nonetheless (88%). The latter has been set to 1, as in the training
phase we wanted to let both RL agents experience as much of the environment as possible,
regardless of whether they would be actually asked to do so.

The parameters of the reinforcement learning system have been set as follows:

• the optimizer is Adam with a learning rate of 6.25 × 10−5;
• the learning period is 16;
• the batch size is 32;
• the timesteps are aggregated to look back to the last 3 timesteps before any decision
process takes place;

• the global gradient norm clipping is 10;
• the importance sampling exponent ranges in [0.4, 1];
• the experience replay buffer has size 5.2 × 103, amounting to almost 50 full repetitions of
the same day over and over, with priority exponent of 0.5;

• the target network update period is 1.6 × 102;
• the number of iterations is 48;
• the number of trips per episode is 1.3 × 103, amounting to almost 10 full repetitions of the
same day over and over;

• the number of validation trips is 2.6 × 103;
• the number of training trips is 5.2 × 103.
• the number of total lives 𝑘 has been set to 100.

Moreover, concerning the reward function, the future demand is computed in a time interval
Δ𝑡 = 1h, whereas the constants modulating the penalties are 𝛾𝐷 = 𝛾𝑃 = 2. Also, every 3
iterations a checkpoint has been stored locally for evaluation purposes.

In the first experiment, the model has been trained from scratch with the number of relocation
workers being 𝑛swap = 12 and the number of battery swap workers being 𝑛rel = 6. Other two
experiments have been performed, by drastically reducing the number of workers and applying
transfer learning. In particular, in the second experiment 𝑛swap = 6, 𝑛rel = 3 and in the third
experiment 𝑛swap = 𝑛rel = 1.



Figure 3: Evaluation of the satisfied demand during the learning procedure for training and validation
agents versus a baseline model with no incentive policy (user willingness 𝑤 = 0). The value of the
parameters is shown in the title. (a) Model trained from scratch, (b), (c) Transfer learning.

The results are shown in Table 2. The evolution of the satisfied demand during the learning
procedure is represented in Figure 3.

The number of validation/training trips stand out the suggested ratio of 1 ∶ 2 between
the online and the offline 𝜖-greedy network. A single iteration took over 1 hour on a PC
equipped with a GeForce GTX 1650 Ti GPU with 4GB of memory along with an Intel i7-10750H
CPU with 32GB of RAM. Both CPU and GPU specs are crucial, as the SimPy processes run
on the CPU, whereas the forward and backward pass of the RL agents’ networks happen on GPU.

As shown in fig.3(a), the two agents trained from scratch cause a decrease in the satisfied
demand during the first iterations, due to their random behaviour with no previous experience.
After around 25 iterations their policies have been efficiently updated. The level of satisfied
demand has improved with respect to the baseline - referred to a standard mobility service
with no user incentives. More interestingly, by reducing the number of workers and applying
transfer learning, it is possible to observe again a beneficial effect over the satisfied demand.
In particular, figure 3(c) shows that in the critical scenario with 𝑛swap = 𝑛rel = 1 the satisfied
demand is constantly larger with respect to the baseline. This means that the by following the
proposal of alternative pick-up and drop-off zones, users are actively participating to the system
rebalancing and contributing to a positive increase of the quality of service.



Table 2
Results

Satisfied demand 𝐷sat

Parameters Training mode N iterations ESB-DQN No incentives

𝑛swap = 12, 𝑛rel = 6 from scratch 30 0.92 0.89
𝑛swap = 6, 𝑛rel = 3 transfer learning 6 0.91 0.88
𝑛swap = 1, 𝑛rel = 1 transfer learning 12 0.90 0.86

5. Discussion and Future Works

In this paper, we presented ESB-DQN, a multi-agent system based on deep reinforcement
learning able to interact with a simulator in order to learn alternative pick-up and drop-off
zones in e-scooter sharing services. The main objective is to combat the imbalance problem by
providing user incentives in order to optimize vehicle availability as well as battery swap and
relocation operations.

Preliminary experiments on real e-scooter data from Louisville (US) have shown encouraging
results on the effect of the satisfied demand of the system, even with a reduced number of
workers.

Further experiments are required for a comprehensive evaluation of the ESB-DQN system.
By varying different parameters of the simulator, e.g., the number of e-scooters |𝑆|, the number
of relocation workers 𝑛rel or battery swap workers 𝑛swap, it is possible to study how each of
them, in turn, affects the user incentives policy. It is worth mentioning that more accurate
demand forecasts for the computation of 𝛿(𝑧, 𝑡) in 2, 3 can be adopted with the aim of getting
further improvements on the overall performance of the ESB-DQN system.

A fundamental effort should be devoted to scale-up experiments on a larger temporal scale
and on larger datasets (e.g., Austin open data [16]). A larger number of iterations would indeed
reflect in a better characterization of the 𝜖-greedy policy. Indeed, despite both RL agents have
reached some sort of convergence with even a few iterations, there may be a few specific corner
cases of states that leave them both unable to decide with high consistency. Concerning a
possible speed-up, since the Simpy processes run on the CPU, there is a lot of time left to gain
by optimizing the underlying simulator to fasten the run time of a single day. On the other
hand, the code related to the multi-agent system is already optimized for GPUs and TPUs.

Another interesting possibility is to apply the ESB-DQN system to other mobility sharing
systems with different vehicles (e.g., e-bikes, e-moped). Provided with the right data and the
proper parameters, both the simulator and the multi-agent system can be directly applied to
such problems.

The proposed approach may be deployed in real mobility systems as a real-time service
following the REST paradigm, integrated into existing app used by mobility service providers.
A prototype of the API is under development along with a chatbot intended to provide also a
natural language interface to the users.
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