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Abstract
More and more often, Human Robot Interaction(HRI) applications require the design of robotics systems
whose decision process implies the capability to evaluate not only the physical environment, but espe-
cially the mental states and the features of its human interlocutor, in order to adapt their social autonomy
every time humans require the robot’s help. Robots will be really cooperative and effective when they
will expose the capability to consider not only the goals or interests explicitly required by humans, but
also those one that are not declared and to provide help that go beyond the literal task execution. In
order to improve the quality of this kind of smart help, a robot has to operate a meta-evaluation of its
own predictive skills to build a model of the interlocutor and of her/his goals. The robot’s capability to
self-trust its skills to interpret the interlocutor and the context, is a fundamental requirement for pro-
ducing smart and effective decisions towards humans. In this work we propose a simulated experiment,
designed with the goal to test a cognitive architecture for trustworthy human robot collaboration. The
experiment has been designed in order to demonstrate how the robot’s capability to learn its own level
of self-trust on its predictive abilities in perceiving the user and building a model of her/him, allows it to
establish a trustworthy collaboration and to maintain an high level of user’s satisfaction, with respect
to the robot’s performance, also when these abilities progressively degrade.
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1. INTRODUCTION

In today’s world, artificial intelligence systems are playing a crucial role in our daily lives. The
decisions made by machines are leaving a profound impact on our society and are involving
almost every aspect of our life. Different kinds of artificial systems, whose behaviours is based
on statistical tools, AI algorithms, machine learning models are used in applications such as
healthcare, government, business, judicial and political spheres. Decisions made by AI systems
lead to beat some of the best human player [1], to make super accurate medical diagnostics [2],
to help companies in customers support [3] and so on. These decisions are more oriented to
superhuman computations and performances, than brain-inspired or psychological paradigms.
With the enormous impact that AI systems have in society, it is crucial to assure that all these
systems we are relying on are trustworthy. Trustworthy AI is largely considered one of the
topics much more demanding in the artificial intelligence field, not only in research, but also in
institutions [4, 5], due to the huge impact that AI systems are having in society.
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As mentioned above, AI moved from human psychology inspired models (i.e. decision
trees in expert systems) to deep neural networks, machine learning, Big Data and so on. If
this type of approach proved to be very powerful in computational and performance terms,
it increased the gap between super intelligent agents and humans, in terms of trustworthy
cooperation between humans and artificial systems. We do not consider just the cases in
which results provided by artificial systems have been extremely dangerous for humans [6, 7]
(trustworthiness as accuracy, robustness, non-discrimination,privacy, security; we focus on those
dimensions of trustworthiness (e.g. adaptation to human autonomy, behavior transparency and
explainability) that are involved when humans and artificial systems, in particular robots, have
to interact [8, 9] and cooperate [10] with each other, and humans have to establish a deep
relationship of trust [11, 12] every time they include robots as part of their plans or goals (task
delegation and adoption [13]). Trust is not just the result of the frequency with which an agent
produces the desired behavior or result; trust is a much more complex attitude, including a
causal attribution, an estimation, an ascription of several internal factors that play a causal role
in the activation and control of the behavior [14].

Cooperation is based on different and complementary kinds of attitudes and reasons from the
partners involved. Let’s consider the following collaborative scenario: a human X (the trustor)
and a robot Y (the trustee) collaborate so that X has to trust Y, in a specific context, for executing
a task 𝜏 and realizing the results that include or correspond to the X’s 𝐺𝑜𝑎𝑙𝑋(𝑔) = 𝑔𝑋 [14]. In
this context, X relies on Y for realizing some part of the task she/he has in mind (task delegation);
on its side, Y decides to help X, to replace her/him and perform a sequence of actions that are
included in the X’s plan, in order to achieve some of her/his goals or sub-goals (task adoption).
The capability to implement a smart task adoption distinguishes a collaborator from a simple
tool, and presupposes intelligence and autonomy [15]. Being truly cooperative implies more
than the simple concept of execution of a prescribed action. For example, in order to adopt some
goal of X in an intelligent form, Y has to understand the X’s mental states (i.e. goals, beliefs,
expectations about Y’s behavior) and it has to adjust the delegated action to the represented
mental states, to the context and to its own current abilities and characteristics. In their much
complex sense, cooperation and help require more autonomy and initiative. A real collaborative
trustee should provide to the trustor different kind of help, according with [15]:

• Sub help: Y satisfies a sub-part of the delegated world-state (so satisfying just a sub-goal
of X),

• Literal help: Y adopts exactly what has been delegated by X,
• Over help: Y goes beyond what has been delegated by X without changing X’s plan (but

including it within a hierarchically superior plan),
• Critical-Over help: Y realizes an over help and in addition modifies also the original

plan/action (included in the new meta-plan),
• Critical help: Y satisfies the relevant results of the requested plan/action (the goal), but

modifies that plan/action,
• Critical-Sub help: Y realizes a sub help and in addition modifies the (sub) plan/action,
• Hyper-critical help: Y adopts goals or interests of X that X itself did not take into account

(at least, in that specific interaction with Y): by doing so, Y neither performs the specific



delegated action/plan nor satisfies the results that were delegated. In practice, Y satisfies
other goals/interests of X by realizing a new plan/action.

Y has to exploit its autonomy, competence and cognitive skills to find the better or a possible
solution for X’s goal. This not necessarily should require a negotiation, discussion, agreement;
it might be an initiative of Y by expecting that X will understand why. This is precisely what
intelligent robots must have and these are the kind of partners the humans need.

How would this advanced form of cooperation would be possible? What are some of the
capabilities that a robot has to show for enhancing trust in its human interlocutor? A smart
and trust-based collaboration between humans and intelligent robots requires, among many
others things, complex cognitive capabilities these artificial systems must be endowed with:
mental attribution, adjustable autonomy, user profiling and user behavior adaptation, behavior
transparency. Besides the capabilities to evaluate the interlocutor and/or the contextual physical
environment, a robot (as a trustee) should be able also to operate a meta-evaluation: how much
itself would be able to interpret and produce the evaluations regarding the trustor? How much
is reliable its capability to perceive or infer the trustor’s features? On the basis of its own
capabilities to perceive or to act in the world, the hypothesis or prediction it has made, the
chosen course of action, are the best or the most effective, with respect to the needs, the features
and the mental states of the interlocutor? Smart help has to be based on different capabilities
to interpret the environment and the interacting user, but first of all, it has to be based on the
robot’s capability to realistically self-assess the level of trustworthiness on its ability to interpret
the collaborative and potentially uncertain context, including the interacting user [16, 17]. The
outcome of the meta-evaluation expressed above represents the robot’s self-trust for adopting a
delegated task. In practice, the robot uses this evaluation of its own specific abilities as a filter
for their use with respect to the interlocutors with whom it is interacting. The robot learns the
trustworthiness of its skills and, on the basis of the context and the task to carry out, establishes
which skills to use and how trustworthy (from its point of view) will be the solution it will
propose to its interlocutor. So robot’s self-trust can be viewed as a precondition for exploiting
the robot’s interpretative skills accordingly to its own interlocutor, in order to foster a true and
deep relationship of collaboration and trust with her/him.

A form of intelligent help that can provide results beyond those explicitly requested by
the interlocutor implies risks. One of the possible consequences of this form of help can be
the emergence of collaborative conflicts between the human (the trustor) and the robot (the
trustee) that adopts the task, due to the robot’s willingness to collaborate and to help the user
better and more deeply than required. Sometimes, the difference between the results of the
adopted task provided by the robot and the user’s expectations, could lead the interlocutor to
a complete lack of trust towards the robot. We are not just considering the robot’s failure in
the precise delegated task: failures become more evident every time the robot goes beyond
the delegated task and the results are too much distant (or even in conflict) from the user’s
expectations. Among humans these conflicts can be mitigated by the experience: humans
learn to measure their competence in achieving specific results, or making the right prediction
about the correctness of a chosen behaviour, on the basis of the context and the interlocutor;
furthermore, on this basis, they learn to self-trust their own abilities/skills (with respect to both
the interlocutors and the tasks). Similarly, robots can learn to trust their capabilities to evaluate



the interlocutors (and consequently to build and use the cognitive models they attribute to them)
trough a repetitive interactions with humans. For example, a robot can exploit the feedback
provided by its interlocutor any time she/he delegates to it a task and receive an evaluation (i.e.
user’s satisfaction) on the results of the robot’s adoption process.

In this work we propose a preliminary, simulated experiment, designed with the goal to
test a cognitive architecture [18] for trustworthy human robot collaboration. The designed
architecture allows a BDI robot [19], with its own mental states (beliefs, goals, plans and so
on) to expose a wide range of cognitive skills that support an effective, smart and trustworthy
collaboration, every time a human user delegates to it a task to achieve in her/his place. In
particular, we focused on endowing the robot with the capabilities to i) adapt its level of collab-
orative autonomy, providing an intelligent help (based on the levels of help formalized in [15])
every time the user delegates to it a task to accomplish; the autonomy adaptation leverages on
the agent’s capabilities to profile the user and to have a theory of mind of her/him [20] ii) learn
its limits in interpreting the needs of the interlocutor, by measuring its degree of self-trust on
its predictive abilities in perceiving the user; the agent chooses those abilities that maximize
the user’s task performance evaluation. In particular the simulation aims at demonstrating how
the robot’s capability to learn the level of self-trust on its predictive abilities in perceiving the
user, allows it to choose the best user’s model (as a collection of mental states) and to preserve
an high level of the user’s task performance evaluation.

2. The proposed experiment

The experiment designed for testing the cognitive architecture proposed in [18], has been imple-
mented by exploiting the well known multi-agent oriented programming (MAOP) framework
JaCaMo [21], that integrates three different multi-agent programming levels: agent-oriented
(AOP), environment-oriented (EOP) and organization-oriented programming (OOP). Basically,
the experiment simulates the process of task delegation and task adoption between a robot and
multiple users, grouped in classes of users, in a specific application domain.

2.1. The experimental settings

We figured the following interactive scenario: the robot is a touristic assistant that helps people
to organize different touristic activities offered by a city (i.e. eat in a restaurant, visit a museum,
visit a monument, drink something in a bar, enjoy the city doing multiple daily activities). The
experiment is based on the interaction between two agents: the user and the robot. Both of
them are implemented as Jason [22] agents. The user has her/his own mental states represented
in form of beliefs, goals and plans and interacts with the robot by delegating to it a task. On
its side, the robot is able to represent and attribute mental states to the user and to itself and,
on the basis of its capabilities to profile the user and build a model of her/him, to adopt the
delegated task at different levels of help.

The experiment has been designed with the goal to show the importance for a robot to
self estimate the level of trustworthiness associated to its expertise in building a profile of
the interacting user. This capability lets the robot choose the best and suitable task to adopt
with respect to the user’s features, also when its skills progressively degrade and can be



Feature Sub-component [interval]

Age
young [0, 0.33]

adult [0.34, 0.66]
old [0.67, 1]

Category
loco tourist [0, 0.33]

foreign tourist [0.34, 0.66]
resident [0.67, 1]

Economic status
low economic status [0, 0.33]

medium economic status [0.34, 0.66]
high economic status [0.67, 1]

Education level
low education [0, 0.33]

medium education [0.34, 0.66]
high education [0.67, 1]

Company
single [0, 0.33]

in couple [0.34, 0.66]
in family [0.67, 1]

Table 1
Map of the relations between features, sub-components and intervals

considered not trustworthy. Indeed, the robot is able to sort these skills on the basis of the
corresponding level of trustworthiness, and leverage on the most trustworthy among them
for deciding how to adopt the task delegated. As mentioned above, two agents populate the
simulation: the agent robot ℛ and the agent user 𝒰 . The agent 𝒰 is characterized by a profile
𝒫𝒰 = {Age, Economic status,Category, Education level,Company}, a collection of five physical
and social features. Every feature is associated to sub-components and real values 𝑟𝐻𝑖 ∈ [0, 1]
belonging to specific intervals that are bonded to the sub-components. Table 1 shows the
relations between features, sub-components and intervals. We decide to consider these groups
of user’s demographic features, because they are all concrete characteristics that help the robot,
operating in a touristic domain, to narrow down which segment of population the interacting
users best fit into. That means the robot can split a larger group into subgroups based on, for
example, their educational level, age, income. This kind of physical, social and relational features
are largely used, easy to collect and they are reasonably good predictors of user preferences [23].
For example, demographic recommendation system generate recommendations based on the
user demographic attributes [24, 25]. In our case the robot is able to filter and categorize the
interacting users based on their attributes and recommends the most suitable service (restaurant,
museum, monument or bar) by utilizing the chosen demographic data collected in its profile.
The partition of the features into sub components is an approximation that allows the robot to
cluster users into a series of discrete categories, commonly used by human for identify expected
behaviors or character traits, related to that particular category [26].

Users are organized into classes of populations: each class collects together users with the
same profile (in terms of sub-components). Each user of a class distinguishes from the others due
to five real values 𝑟𝐻𝑖 for 𝑖 = 1, .., 5 randomly picked up from the interval associated to the sub-
components. The decision making system of ℛ is designed following the principles described in
[18]. The robot is able to recognize and classify, as set of specific sub-components, the features
collected in 𝒫𝒰 , consistent with the table 1. ℛ is not always able to infer all the features of
𝒰 ; that depends on the robot’s accuracy to estimate a feature of 𝒫𝒰 . In this experiment we
decide to define two levels of accuracy: a low level of accuracy, that means the robot has great



difficulties in distinguishing a feature, and an high level of accuracy, corresponding to the fact
that it is perfectly able to recognize a feature. We have designed the simulation so that ℛ can
estimate the sub-components collected in 𝒫𝒰 , but it is not able to perfectly recognize the real
values 𝑟𝐻𝑖 for each user; because of that, it associates to every feature it has estimated, the
mean value of the corresponding intervals defined in the table 1. We observe that, if the robot
profiles a feature correctly, the corresponding mean value will be close to the value 𝑟𝐻𝑖 of the
user (for that feature), while if the robot is not able to infer correctly the feature, this value will
be distant from that of the user.

It is important to specify that the robot’s beliefs are organized according to the features that
are classified within 𝒫𝒰 and which are perceivable by the robot itself. ℛ has available (among
the set of its mental states) a subset of beliefs where are represented information about a finite
number of services that a city offers: restaurants, museums, monuments to visit and places for
having fun (night clubs, bar and so on). Each service is described with respect to the features
described in table 1: for example, in the robot’s beliefs base exist restaurants much more suitable
to young people, instead of monuments or museums much more adapt to people with an high
level of education, and so on. The robot is able to select the most suitable service with respect
to the features that it has been able to infer from 𝒰 . This criterion of choice can lead the robot
to select the most adapt service with respect to the user’s profile or not, on the basis of its own
profiling skills accuracy.

2.2. The Experiment description

The experiment is a simulation of several trials – interactions betweenℛ and 100 users belonging
to the same class (population of users) – involving the robot and different users. Every interac-
tion reproduces the mechanism of delegation and adoption: 𝒰 delegates a task to ℛ and the robot
adopts the task at different levels of intelligent help, among those introduced in section 1. We
defined a class of population 𝒞1 formed by users that have the following profile (collection of sub-
components):𝒫𝒰 = {young,medium Economic Status, foreign Tourist,medium Education, single}
. Each interaction requires that the current user delegates to the robot the goal to eat in a restau-
rant. The request might be further specified by giving the name of the restaurant, the type of
restaurant and the area of the city in which it is located. We decide to specify only the area of
the city where the user desires to eat.

2.3. Building robot’s self-trust

The robot ℛ builds its self-trust for adopting the delegated task 𝜏 by means of a training
phase, with the goal to learn the levels of trustworthiness associated to its own user profiling
capabilities. The training phase requires that the robot performs an interaction with a population
of a specific class formed by 100 users. Every user 𝒰 delegates to ℛ the same task (i.e. eat in a
restaurant); for its part, the robot adopts the task at a literal level of help. At every interaction
ℛ computes a robot’s skill trustworthiness value, each for every feature that forms 𝒫𝒰 . These
values depend on the feedback provided by the users during the training phase. We designed a
robot that explicitly asks for feedback, once it accomplishes a task to be achieved on behalf of
𝒰 . Every question the robot asks humans aims at evaluating how the delegating user has been



satisfied by the robot’s task adoption; different user’s satisfaction dimensions are investigated,
each of them corresponding with the different abilities of the robot to profile the user. In this
way ℛ can evaluate how each of its skills performs (and to measure its trustworthiness) with
respect to build 𝒫𝒰 . Furthermore, ℛ can sort the skills on the basis of the measured level of
trustworthiness.

2.4. The user’s satisfaction function

We have introduced a user’s satisfaction function 𝑆𝒰 that computes the global user’s satisfaction
regarding the collaboration offered by the robot; the robot aims at maximizing this function
every time it interacts with a new user. 𝑆𝒰 is the linear combination between a term 𝑃𝜏 that
measures how much the user has been satisfied by the results of ℛ in performing precisely
the delegated task and a term 𝑆𝒰 𝑝𝑙𝑢𝑠 that measures how much the user has been satisfied by
the additional, not explicitly required part of the plan performed by the robot in its smart
collaboration. Both terms are are affected by the robot’s capabilities to profile the user and to
learn their corresponding trustworthiness. In particular, ℛ’s profiling capability is quantified
by calculating how the robot has adapted the task to the real user’s features that form 𝒫𝒰 : the
greater is this measure for each feature, the more accurate is the robot’s capability to profile the
user on that feature and the greater are the user’s satisfaction components mentioned above.
As will be clear in the results section (section 3), both components 𝑃𝜏 and 𝑆𝒰 𝑝𝑙𝑢𝑠 are designed
so that they vary in the codomain [0, 1], while 𝑆𝒰 varies in the codomain [−1, 2].

2.5. The experiment’s phases

The experiment is structured as follows:

1. the robot implements a first trial with a population of class 𝒞1. During this multiple
interaction, the robot decides to adopt the task at the level of help it considers appropriate
to the user and the context. The phase is designed so that ℛ infers the feature category
with a low level of accuracy, while the other features of 𝒫𝒰 are inferred with an high
level of accuracy;

2. the robot implements a second trial with the same population of class 𝒞1 exploited in the
previous phase. During the trial, the robot decides to adopt the task at the level of help
it considers appropriate to the user and the context. In this case ℛ’s capability to infer
𝒫𝒰 degrade because the features age, category, education are affected by a low level of
accuracy (features company and economic status are still inferred with an high level of
accuracy);

3. the robot starts a training phase with a new population of class 𝒞1, in order to learn its
own level of self-trust. In this phase, ℛ has the same profiling skills described at point 1.
Please recall that, during the training phase, ℛ adopts the task at a literal level of help;

4. the robot starts a second training phase with a new population of class 𝒞1, but this time
its profiling skills are the same described at point 2;

5. the trials described at points 1 and 2 are repeated, but this time the robot exploits what it
has learned respectively in the context described at the point 3 and 4, in order to achieve
the task adoption process.



(a)

(b)

(c)

Figure 1: Figure 1a and 1b show the trend of the curves representing the user’s satisfaction, obtained
after each phase described in section 2.5: each plot represents the trend of the component 𝑃𝜏 (light red
line) and the trend of 𝑆𝑈 (dark red line) as combination of 𝑃𝜏 and 𝑆𝑈𝑝𝑙𝑢𝑠. Figure 1c shows a statistical
description of the impact of the self-trust building process in the level of user’s satisfaction on the
robot’s smart collaboration.

3. Results

In this section we present the results of the experiment designed in order to address the research
purpose previously defined: demonstrate how building robot’s self-trust is a precondition for
providing smart and trustworthy collaboration, every time a user requires the robot’s help. The
plots shown in figure 1 compares the results obtained after the execution of each experiment’s



phase described in section 2.5.
Let’s start by describing the figure 1a. This plots refer to the case when the robot’s capability

to recognize the feature category is inaccurate, while are accurate the capability to recognize the
remaining features collected in 𝒫𝒰 . The left plots show the distribution of 𝑃𝜏 and 𝑆𝒰 obtained
when ℛ performs a trial with a population of class 1 and it is not yet able to evaluate the level
of trustworthiness of its profiling skills. Instead, the right chart shows 𝑃𝜏 and 𝑆𝒰 trends when
the robot’s capability are the same described in section 2.5 at point 1, but it has learned to self
evaluate the trustworthiness of its own profiling skills.

Figure 1b displays the trends of the user’s satisfaction function 𝑆𝒰 and its component 𝑃𝜏

in case the robot performs a trial with a population of class 1 and its profiling skills are such
that it cannot correctly recognize the features age,category,education, while it infers the user’s
economic status and company with an high accuracy (point 2 described in section 2.5). In
particular, the left part of the figure shows the results in case the robot is not able to self evaluate
the trustworthiness of its profiling skills, while the right part shows how the user’s satisfaction
change once the robot has learned to attribute a specific level of trustworthiness to its profiling
skills.

Finally, figure 1c shows the box plots comparing the distributional characteristics of 𝑆𝒰
before and after the robot’s self-trust building process. In particular, the left box plot and the
right box plot refer to the cases of the robot is capable to profile the user with the conditions
described respectively at point 1 and 2 of the section 2.5.

Comparing the plots in figure 1a we observe how the robot’s capability to recognize the level
of trustworthiness of its profiling skills is crucial for maintaining an high level of the user’s
satisfaction about the robot’s performance. This capability become more important when the
robot decides to adopt the delegated task to a level of help different with respect the literal one.
Indeed, despite the robot provides unexpected results to the user, its own capabilities to adapt
these results by leveraging on the capabilities that it considers trustworthy, allows the robot to
provide unexpected but suitable results, that are appropriate to the user himself/herself. The
plots in figure 1a and the left box plot of figure 1c, show how the mean (and the median) value
of 𝑆𝒰 increases after the robot has learned its self-trust level; moreover, the spread and the
skeweness of the 𝑆𝒰 distribution is drastically reduced by the robot’s capability to self evaluate
the trustworthiness of its profiling skills. Figure 1b and the right box plot of figure 1c show the
benefits of the building self-trust process on the user task performance evaluation. In this case,
the increase of the median value of 𝑆𝒰 is less evident than for the previous case analyzed, but
the training phase impact remains evident on the spread and the skeweness of the distribution.
This means that, also when the robot’s profiling skills degrade, its capability to evaluate their
trustworthiness continue to allows the robot to provide unexpected but suitable results with
respect to the needs of the users. It is also relevant to underline how the effective performance
of the robot’s help depends on the width and variety of the database of the accessible services
with respect to to the selected features. In fact, with a very low number of trustworthy features
(given the low level of accuracy of three of them) the result of the adoption could be really very
good only if the database contains services responding, with very high performance, to the two
remaining features independently to the values of the three (degraded) features.



4. Conclusions and future works

Cooperation is one of the main social activities exploited by humans for gaining resources, in
terms of goals achieved, shared knowledge and so on. The increasing intelligent technology
surrounding us is becoming crucial for our own social development, and, as a consequence, the
need of trusting these supporting and sophisticated tools is becoming every day more stringent.
But, if on the one hand these systems are becoming more intelligent and sophisticated, on the
other hand they show a strong lack in the ability to collaborate effectively with humans. Despite
the complexity of the problem they can solve, they continue to have just a passive supporting
role in the collaboration with humans. For being not only executive tools, these intelligent
systems (i.e. robots, chat-bots, autonomous cars and so on) should expose the capability to
behave in a critical way with respect to the needs/goals of their interacting users. Indeed,
the collaboration becomes deep and effective when a system is able to provide not declared,
unexpected results but compatible with the context, the needs of the user and the capabilities of
the system itself. The level of autonomy of robots or other artificial agents, it should be such
that such systems can exercise a certain level of discretion in achieving the task delegated but
humans. But, in order to foster trust in humans, they should behave having the capability to
create a complex theory of mind of the interlocutors and a strong capability to self assess their
own capability to carry out a task, also at a different level of help than required.

In this work we have presented the first of a series of experiments draw for testing different
aspects of a designed cognitive architecture. This architecture, based on consolidated theoretical
principles (theory of adoption and delegation, theory of mind, theory of social adjustable
autonomy, theory of trust) has the main goal to build robots that provide smart, trustworthy
and transparent collaboration, every time a human requires their help. With this experiment we
wanted to test the robustness of the designed architecture to rely on the robot’s ability to learn
the limits in interpreting the needs of its interlocutor, by measuring the trustworthiness of its
predictive abilities. In fact, the architecture gives to a robot the capability to profile the user and
to leverage on its profiling skills in an adaptive manner, by exploiting those skills that maximize
the user’s task performance evaluation; it allows the robot to reason about the mental states of
the user (beliefs, goals, plans and intentions) and makes it capable to modulate its autonomy for
achieving the delegated task. One of the main problems in intelligent collaboration between
humans is the possibility of misunderstandings that can lead to conflicts between cooperators.
We call these collaborative conflicts, as they are based on the desire to collaborate beyond
what is required but in doing this errors and discrepancies can occur. Just to minimize these
conflicts and increase the robot’s trustworthiness, an important requirement to introduce is
the the capability of the robot itself to self trust his capabilities to build a complex model of
the user. The data analyzed have shown how the process to learn the trustworthiness of its
own profiling skills can lead the robot to have an effective collaboration, based not only on
the actions/tasks prescribed by the user, but especially on the non declared needs and goals
of the user himself/herself. Our main future work will be to move the experiment in a real
environment, with a real robotic platform and real users. We will exploit the humanoid robot
Nao, widely used in HRI applications. Furthermore, we will continue to provide simple but
effective experiments that allow us to investigate different aspects of the concept of intelligent
and trustworthy collaboration between robots and humans, that consider robots as cognitive



agents able to interact with humans as humans do when they interact with each others.
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